18
Views
34
CrossRef citations to date
0
Altmetric
Article

STAMP, a Novel Predicted Factor Assisting TIF2 Actions in Glucocorticoid Receptor-Mediated Induction and Repression

&
Pages 1467-1485 | Received 25 Jul 2006, Accepted 08 Nov 2006, Published online: 27 Mar 2023

REFERENCES

  • Anafi, M., Y. F. Yang, N. A. Barlev, M. V. Govindan, S. L. Berger, T. R. Butt, and P. G. Walfish. 2000. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor. Mol. Endocrinol. 14:718–732.
  • Aronheim, A. 1997. Improved efficiency Sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res. 25:3373–3374.
  • Beato, M., G. Chalepakis, M. Schauer, and E. P. Slater. 1989. DNA regulatory elements for steroid hormones. J. Steroid Biochem. 32:737–748.
  • Brown, K., Y. Chen, T. M. Underhill, J. S. Mymryk, and J. Torchia. 2003. The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5. J. Biol. Chem. 278:39402–39412.
  • Chang, C.-Y., J. D. Norris, H. Gron, L. A. Paige, P. T. Hamilton, D. J. Kenan, D. Fowlkes, and D. P. McDonnell. 1999. Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors α andβ. Mol. Cell. Biol. 19:8226–8239.
  • Chen, D., S. M. Huang, and M. R. Stallcup. 2000. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J. Biol. Chem. 275:40810–40816.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and R. M. Evans. 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Chen, S., N. J. Sarlis, and S. S. Simons, Jr. 2000. Evidence for a common step in three different processes for modulating the kinetic properties of glucocorticoid receptor-induced gene transcription. J. Biol. Chem. 275:30106–30117.
  • Chen, W., I. Rogatsky, and M. J. Garabedian. 2006. MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor. Mol. Endocrinol. 20:560–572.
  • Cho, S., B. L. Kagan, J. A. Blackford, Jr., D. Szapary, and S. S. Simons, Jr. 2005. Glucocorticoid receptor ligand binding domain is sufficient for the modulation of both the dose-response curve of receptor-agonist complexes and the partial agonist activity of receptor-antisteroid complexes by glucocorticoid receptors, coactivator TIF2, and Ubc9. Mol. Endocrinol. 19:290–311.
  • Darimont, B. D., R. L. Wagner, J. W. Apriletti, M. R. Stallcup, P. J. Kushner, J. D. Baxter, R. J. Fletterick, and K. R. Yamamoto. 1998. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12:3343–3356.
  • de Bosscher, K., B. W. Vanden, and G. Haegeman. 2003. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocrinol. Rev. 24:488–522.
  • de Felipe, K. S., B. T. Carter, E. A. Althoff, and V. W. Cornish. 2004. Correlation between ligand-receptor affinity and the transcription readout in a yeast three-hybrid system. Biochemistry 43:10353–10363.
  • Ding, X. F., C. M. Anderson, H. Ma, H. Hong, R. M. Uht, P. J. Kushner, and M. R. Stallcup. 1998. Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): Multiple motifs with different binding specificities. Mol. Endocrinol. 12:302–313.
  • Dubrulle, J., and O. Pourquie. 2004. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427:419–422.
  • Giannoukos, G., D. Szapary, C. L. Smith, J. E. W. Meeker, and S. S. Simons, Jr. 2001. New antiprogestins with partial agonist activity: potential selective progesterone receptor modulators (SPRMs) and probes for receptor- and coregulator-induced changes in progesterone receptor induction properties. Mol. Endocrinol. 15:255–270.
  • Goswami, R., R. Lacson, E. Yang, R. Sam, and T. Unterman. 1994. Functional analysis of glucocorticoid and insulin response sequences in the rat insulin-like growth factor-binding protein-1 promoter. Endocrinology 134:736–743.
  • Gurdon, J. B., and P. Y. Bourillot. 2001. Morphogen gradient interpretation. Nature 413:797–803.
  • Hatchell, E. C., S. M. Colley, D. J. Beveridge, M. R. Epis, L. M. Stuart, K. M. Giles, A. D. Redfern, L. E. Miles, A. Barker, L. M. MacDonald, P. G. Arthur, J. C. Lui, J. L. Golding, R. K. McCulloch, C. B. Metcalf, J. A. Wilce, M. C. Wilce, R. B. Lanz, B. W. O'Malley, and P. J. Leedman. 2006. SLIRP, a small SRA binding protein, is a nuclear receptor corepressor. Mol. Cell 22:657–668.
  • He, Y., D. Szapary, and S. S. Simons, Jr. 2002. Modulation of induction properties of glucocorticoid receptor-agonist and -antagonist complexes by coactivators involves binding to receptors but is independent of ability of coactivators to augment transactivation. J. Biol. Chem. 277:49256–49266.
  • Hong, H., K. Kohli, A. Trivedi, D. L. Johnson, and M. R. Stallcup. 1996. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93:4948–4952.
  • Jackson, A. L., S. R. Bartz, J. Schelter, S. V. Kobayashi, J. Burchard, M. Mao, B. Li, G. Cavet, and P. S. Linsley. 2003. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21:635–637.
  • Kalkhoven, E., J. E. Valentine, D. M. Heery, and M. G. Parker. 1998. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243.
  • Karin, M., and L. Chang. 2001. AP-1-glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol. 169:447–451.
  • Kaul, S., J. A. Blackford, Jr., S. Cho, and S. S. Simons, Jr. 2002. Ubc9 is a novel modulator of the induction properties of glucocorticoid receptors. J. Biol. Chem. 277:12541–12549.
  • Kim, Y., Y. Sun, C. Chow, Y. G. Pommier, and S. S. Simons, Jr. 2006. Effects of acetylation, polymerase phosphorylation, and DNA unwinding in glucocorticoid receptor transactivation. J. Steroid Biochem. Mol. Biol. 100:3–17.
  • Kino, T., and G. P. Chrousos. 2003. Tumor necrosis factor alpha receptor- and Fas-associated FLASH inhibit transcriptional activity of the glucocorticoid receptor by binding to and interfering with its interaction with p160 type nuclear receptor coactivators. J. Biol. Chem. 278:3023–3029.
  • Kino, T., O. Slobodskaya, G. N. Pavlakis, and G. P. Chrousos. 2002. Nuclear receptor coactivator p160 proteins enhance the HIV-1 long terminal repeat promoter by bridging promoter-bound factors and the Tat-P-TEFb complex. J. Biol. Chem. 277:2396–2405.
  • Kozak, M. 1989. The scanning model of translation: an update. J. Cell Biol. 108:229–241.
  • Leong, G. M., N. Subramaniam, L. L. Issa, J. B. Barry, T. Kino, P. H. Driggers, M. J. Hayman, J. A. Eisman, and E. M. Gardiner. 2004. Ski-interacting protein, a bifunctional nuclear receptor coregulator that interacts with N-CoR/SMRT and p300. Biochem. Biophys. Res. Commun. 315:1070–1076.
  • Ma, H., H. Hong, S.-M. Huang, R. A. Irvine, P. Webb, P. J. Kushner, G. A. Coetzee, and M. R. Stallcup. 1999. Multiple signal input and output domains of the 160-kilodalton nuclear receptor coactivator proteins. Mol. Cell. Biol. 19:6164–6173.
  • Ma, H., Y. Shang, D. Y. Lee, and M. R. Stallcup. 2003. Study of nuclear receptor-induced transcription complex assembly and histone modification by chromatin immunoprecipitation assays. Methods Enzymol. 364:284–296.
  • McInerney, E. M., D. W. Rose, S. E. Flynn, S. Westin, T.-M. Mullen, A. Krones, J. Inostroza, J. Torchia, R. T. Nolte, N. Assa-Munt, M. V. Milburn, C. K. Glass, and M. G. Rosenfeld. 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12:3357–3368.
  • McKenna, N. J., R. B. Lanz, and B. W. O'Malley. 1999. Nuclear receptor coregulators: cellular and molecular biology. Endocrine Rev. 20:321–344.
  • McKenna, N. J., and B. W. O'Malley. 2002. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108:465–474.
  • Nagase, T., K. Ishikawa, M. Suyama, R. Kikuno, M. Hirosawa, N. Miyajima, A. Tanaka, H. Kotani, N. Nomura, and O. Ohara. 1999. Prediction of the coding sequences of unidentified human genes. XIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 6:63–70.
  • Onate, S. A., V. Boonyaratanakornkit, T. E. Spencer, S. Y. Tsai, M.-J. Tsai, D. P. Edwards, and B. W. O'Malley. 1998. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J. Biol. Chem. 273:12101–12108.
  • Onate, S. A., S. Y. Tsai, M.-J. Tsai, and B. W. O'Malley. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357.
  • Oshima, H., and S. S. Simons, Jr. 1993. Sequence-selective interactions of transcription factor elements with tandem glucocorticoid-responsive elements at physiological steroid concentrations. J. Biol. Chem. 268:26858–26865.
  • Robyr, D., A. P. Wolffe, and W. Wahli. 2000. Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 14:329–347.
  • Rogatsky, I., H. F. Luecke, D. C. Leitman, and K. R. Yamamoto. 2002. Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc. Natl. Acad. Sci. USA 99:16701–16706.
  • Rogatsky, I., J. M. Trowbridge, and M. J. Garabedian. 1997. Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol. Cell. Biol. 17:3181–3193.
  • Rogatsky, I., J. C. Wang, M. K. Derynck, D. F. Nonaka, D. B. Khodabakhsh, C. M. Haqq, B. D. Darimont, M. J. Garabedian, and K. R. Yamamoto. 2003. Target-specific utilization of transcriptional regulatory surfaces by the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 100:13845–13850.
  • Rogatsky, I., K. A. Zarember, and K. R. Yamamoto. 2001. Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO. J. 20:6071–6083.
  • Schaaf, M. J., and J. A. Cidlowski. 2002. Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem. Mol. Biol. 83:37–48.
  • Simons, Jr., S. S. 2003. The importance of being varied in steroid receptor transactivation. TIPS 24:253–259.
  • Simons, Jr., S. S. 2006. How much is enough? Modulation of dose-response curve for steroid receptor-regulated gene expression by changing concentrations of transcription factor. Curr. Topics Med. Chem. 6:271–285.
  • Simons, Jr., S. S., M. Pons, and D. F. Johnson. 1980. α-Keto mesylate: a reactive thiol-specific functional group. J. Org. Chem. 45:3084–3088.
  • Singh, P., S. W. Chan, and W. Hong. 2001. Retinoblastoma protein is functionally distinct from its homologues in affecting glucocorticoid receptor-mediated transcription and apoptosis. J. Biol. Chem. 276:13762–13770.
  • Song, L.-N., B. Huse, S. Rusconi, and S. S. Simons, Jr. 2001. Transactivation specificity of glucocorticoid vs. progesterone receptors: role of functionally different interactions of transcription factors with amino- and carboxyl-terminal receptor domains. J. Biol. Chem. 276:24806–24816.
  • Suwanichkul, A., M. L. Cubbage, and D. R. Powell. 1990. The promoter of the human gene for insulin-like growth factor binding protein-1. Basal promoter activity in HEP G2 cells depends upon liver factor B1. J. Biol. Chem. 265:21185–21193.
  • Szapary, D., Y. Huang, and S. S. Simons, Jr. 1999. Opposing effects of corepressor and coactivators in determining the dose-response curve of agonists, and residual agonist activity of antagonists, for glucocorticoid receptor regulated gene expression. Mol. Endocrinol. 13:2108–2121.
  • Szapary, D., M. Xu, and S. S. Simons, Jr. 1996. Induction properties of a transiently transfected glucocorticoid-responsive gene vary with glucocorticoid receptor concentration. J. Biol. Chem. 271:30576–30582.
  • Truss, M., and M. Beato. 1993. Steroid hormone receptors: interaction with deoxyribonucleic acid and transcription factors. Endocrine Rev. 14:459–479.
  • Tsai, M.-J., and B. W. O'Malley. 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486.
  • Voegel, J. J., M. J. S. Heine, M. Tini, V. Vivat, P. Chambon, and H. Gronemeyer. 1998. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519.
  • Voegel, J. J., M. J. S. Heine, C. Zechel, P. Chambon, and H. Gronemeyer. 1996. TIF2, a 160-kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15:3667–3675.
  • Wang, Q., J. A. Blackford, Jr., L.-N. Song, Y. Huang, and S. S. Simons, Jr. 2004. Equilibrium interactions of corepressors and coactivators modulate the properties of agonist and antagonist complexes of glucocorticoid receptors. Mol. Endocrinol. 18:1376–1395.
  • Wang, Q., W. F. Richter, S. L. Anzick, P. S. Meltzer, and S. S. Simons, Jr. 2004. Modulation of transcriptional sensitivity of mineralocorticoid and estrogen receptors. J. Steroid Biochem. Mol. Biol. 91:197–210.
  • Xu, J., and Q. Li. 2003. Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol. Endocrinol. 17:1681–1692.
  • Xu, L., C. K. Glass, and M. G. Rosenfeld. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Cell Biol. 9:140–147.
  • Zeng, H., S. Y. Plisov, and S. S. Simons, Jr. 2000. Ability of the glucocorticoid modulatory element (GME) to modify glucocorticoid receptor transactivation indicates parallel pathways for the expression of GME and glucocorticoid response element activities. Mol. Cell Endocrinol. 162:221–234.
  • Zhang, C., D. R. Dowd, A. Staal, C. Gu, J. B. Lian, W. A. J. van, G. S. Stein, and P. N. MacDonald. 2003. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J. Biol. Chem. 278:35325–35336.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.