272
Views
31
CrossRef citations to date
0
Altmetric
Article

Promyelocytic Leukemia Protein Isoform II Promotes Transcription Factor Recruitment To Activate Interferon Beta and Interferon-Responsive Gene Expression

, , &
Pages 1660-1672 | Received 10 Dec 2014, Accepted 23 Feb 2015, Published online: 20 Mar 2023

REFERENCES

  • Randall RE, Goodbourn S. 2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1–47. http://dx.doi.org/10.1099/vir.0.83391-0.
  • Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. http://dx.doi.org/10.1128/CMR.00046-08.
  • Jacobs BL, Langland JO. 1996. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology 219:339–349. http://dx.doi.org/10.1006/viro.1996.0259.
  • Yoneyama M, Fujita T. 2009. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227:54–65. http://dx.doi.org/10.1111/j.1600-065X.2008.00727.x.
  • Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. 1998. Virus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell 1:507–518. http://dx.doi.org/10.1016/S1097-2765(00)80051-9.
  • Lin R, Heylbroeck C, Pitha PM, Hiscott J. 1998. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18:2986–2996.
  • Baeuerle PA, Baltimore D. 1988. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242:540–546. http://dx.doi.org/10.1126/science.3140380.
  • Thanos D, Maniatis T. 1995. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 83:1091–1100. http://dx.doi.org/10.1016/0092-8674(95)90136-1.
  • Kim TK, Kim TH, Maniatis T. 1998. Efficient recruitment of TFIIB and CBP-RNA polymerase II holoenzyme by an interferon-beta enhanceosome in vitro. Proc Natl Acad Sci U S A 95:12191–12196. http://dx.doi.org/10.1073/pnas.95.21.12191.
  • Merika M, Williams AJ, Chen G, Collins T, Thanos D. 1998. Recruitment of CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of transcription. Mol Cell 1:277–287. http://dx.doi.org/10.1016/S1097-2765(00)80028-3.
  • Weaver BK, Kumar KP, Reich NC. 1998. Interferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol 18:1359–1368.
  • Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. 1998. How cells respond to interferons. Annu Rev Biochem 67:227–264. http://dx.doi.org/10.1146/annurev.biochem.67.1.227.
  • Platanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386. http://dx.doi.org/10.1038/nri1604.
  • van Boxel-Dezaire AH, Rani MR, Stark GR. 2006. Complex modulation of cell type-specific signaling in response to type I interferons. Immunity 25:361–372. http://dx.doi.org/10.1016/j.immuni.2006.08.014.
  • de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A. 1990. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 347:558–561. http://dx.doi.org/10.1038/347558a0.
  • Goddard AD, Borrow J, Freemont PS, Solomon E. 1991. Characterization of a zinc finger gene disrupted by the t(15,17) in acute promyelocytic leukemia. Science 254:1371–1374. http://dx.doi.org/10.1126/science.1720570.
  • Borden KLB, Boddy MN, Lally J, Oreilly NJ, Martin S, Howe K, Solomon E, Freemont PS. 1995. The solution structure of the ring finger domain from the acute promyelocytic leukemia proto-oncoprotein PML. EMBO J 14:1532–1541.
  • Fagioli M, Alcalay M, Pandolfi PP, Venturini L, Mencarelli A, Simeone A, Acampora D, Grignani F, Pelicci PG. 1992. Alternative splicing of PML transcripts predicts coexpression of several carboxy-terminally different protein isoforms. Oncogene 7:1083–1091.
  • Jensen K, Shiels C, Freemont PS. 2001. PML protein isoforms and the RBCC/TRIM motif. Oncogene 20:7223–7233. http://dx.doi.org/10.1038/sj.onc.1204765.
  • Van Damme E, Laukens K, Dang TH, Van Ostade X. 2010. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67. http://dx.doi.org/10.7150/ijbs.6.51.
  • Bernardi R, Pandolfi PP. 2007. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8:1006–1016. http://dx.doi.org/10.1038/nrm2277.
  • Dellaire G, Bazett-Jones DP. 2004. PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26:963–977. http://dx.doi.org/10.1002/bies.20089.
  • Krieghoff-Henning E, Hofmann TG. 2008. Role of nuclear bodies in apoptosis signalling. Biochim Biophys Acta 1783:2185–2194. http://dx.doi.org/10.1016/j.bbamcr.2008.07.002.
  • Bischof O, Kirsh O, Pearson M, Itahana K, Pelicci PG, Dejean A. 2002. Deconstructing PML-induced premature senescence. EMBO J 21:3358–3369. http://dx.doi.org/10.1093/emboj/cdf341.
  • El Asmi F, Marouni MA, Dutrieux J, Blondel D, Nisole S, Chelbi-Alix MK. 2014. Implication of PMLIV in both intrinsic and innate immunity. PLoS Pathog 10:e1003975. http://dx.doi.org/10.1371/journal.ppat.1003975.
  • Everett RD, Chelbi-Alix MK. 2007. PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89:819–830. http://dx.doi.org/10.1016/j.biochi.2007.01.004.
  • Tavalai N, Stamminger T. 2008. New insights into the role of the subnuclear structure ND10 for viral infection. Biochim Biophys Acta 1783:2207–2221. http://dx.doi.org/10.1016/j.bbamcr.2008.08.004.
  • Chelbi-Alix MK, Pelicano L, Quignon F, Koken MH, Venturini L, Stadler M, Pavlovic J, Degos L, de Thé H. 1995. Induction of the PML protein by interferons in normal and APL cells. Leukemia 9:2027–2033.
  • Stadler M, Chelbi-Alix MK, Koken MH, Venturini L, Lee C, Saïb A, Quignon F, Pelicano L, Guillemin MC, Schindler C. 1995. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene 11:2565–2573.
  • Iki S, Yokota S, Okabayashi T, Yokosawa N, Nagata K, Fujii N. 2005. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus. Virology 343:106–115. http://dx.doi.org/10.1016/j.virol.2005.08.010.
  • Chelbi-Alix MK, Wietzerbin J. 2007. Interferon, a growing cytokine family: 50 years of interferon research. Biochimie 89:713–718. http://dx.doi.org/10.1016/j.biochi.2007.05.001.
  • Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW. 1999. Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 189:663–672. http://dx.doi.org/10.1084/jem.189.4.663.
  • Mossman KL, Saffran HA, Smiley JR. 2000. Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74:2052–2056. http://dx.doi.org/10.1128/JVI.74.4.2052-2056.2000.
  • Ullman AJ, Hearing P. 2008. Cellular proteins PML and Daxx mediate an innate antiviral defense antagonized by the adenovirus E4 ORF3 protein. J Virol 82:7325–7335. http://dx.doi.org/10.1128/JVI.00723-08.
  • Ullman AJ, Reich NC, Hearing P. 2007. Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81:4744–4752. http://dx.doi.org/10.1128/JVI.02385-06.
  • Hoppe A, Beech SJ, Dimmock J, Leppard KN. 2006. Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 80:3042–3049. http://dx.doi.org/10.1128/JVI.80.6.3042-3049.2006.
  • Cuchet D, Sykes A, Nicolas A, Orr A, Murray J, Sirma H, Heeren J, Bartelt A, Everett RD. 2011. PML isoforms I and II participate in PML-dependent restriction of HSV-1 replication. J Cell Sci 124:280–291. http://dx.doi.org/10.1242/jcs.075390.
  • Zhong S, Salomoni P, Pandolfi PP. 2000. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2:E85–E90. http://dx.doi.org/10.1038/35010583.
  • Maarifi G, Chelbi-Alix MK, Nisole S. 2014. PML control of cytokine signaling. Cytokine Growth Factor Rev 25:551–561. http://dx.doi.org/10.1016/j.cytogfr.2014.04.008.
  • Choi YH, Bernardi R, Pandolfi PP, Benveniste EN. 2006. The promyelocytic leukemia protein functions as a negative regulator of IFN-gamma signaling. Proc Natl Acad Sci U S A 103:18715–18720. http://dx.doi.org/10.1073/pnas.0604800103.
  • El Bougrini J, Dianoux L, Chelbi-Alix MK. 2011. PML positively regulates interferon gamma signaling. Biochimie 93:389–398. http://dx.doi.org/10.1016/j.biochi.2010.11.005.
  • Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, Galande S. 2007. Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 9:45–56. http://dx.doi.org/10.1038/ncb1516.
  • Ulbricht T, Alzrigat M, Horch A, Reuter N, von Mikecz A, Steimle V, Schmitt E, Krämer OH, Stamminger T, Hemmerich P. 2012. PML promotes MHC class II gene expression by stabilizing the class II transactivator. J Cell Biol 199:49–63. http://dx.doi.org/10.1083/jcb.201112015.
  • Xu ZX, Zou WX, Lin P, Chang KS. 2005. A role for PML3 in centrosome duplication and genome stability. Mol Cell 17:721–732. http://dx.doi.org/10.1016/j.molcel.2005.02.014.
  • Beech SJ, Lethbridge KJ, Killick N, McGlincy N, Leppard KN. 2005. Isoforms of the promyelocytic leukemia protein differ in their effects on ND10 organization. Exp Cell Res 307:109–117. http://dx.doi.org/10.1016/j.yexcr.2005.03.012.
  • Guccione E, Lethbridge KJ, Killick N, Leppard KN, Banks L. 2004. HPV E6 proteins interact with specific PML isoforms and allow distinctions to be made between different POD structures. Oncogene 23:4662–4672. http://dx.doi.org/10.1038/sj.onc.1207631.
  • Leppard KN, Emmott E, Cortese MS, Rich T. 2009. Adenovirus type 5 E4 Orf3 protein targets promyelocytic leukaemia (PML) protein nuclear domains for disruption via a sequence in PML isoform II that is predicted as a protein interaction site by bioinformatic analysis. J Gen Virol 90:95–104. http://dx.doi.org/10.1099/vir.0.005512-0.
  • King P, Goodbourn S. 1994. The beta-interferon promoter responds to priming through multiple independent regulatory elements. J Biol Chem 269:30609–30615.
  • Li Y, Hu X, Song Y, Lu Z, Ning T, Cai H, Ke Y. 2011. Identification of novel alternative splicing variants of interferon regulatory factor 3. Biochim Biophys Acta 1809:166–175. http://dx.doi.org/10.1016/j.bbagrm.2011.01.006.
  • Mankouri J, Fragkoudis R, Richards KH, Wetherill LF, Harris M, Kohl A, Elliott RM, Macdonald A. 2010. Optineurin negatively regulates the induction of IFNbeta in response to RNA virus infection. PLoS Pathog 6:e1000778. http://dx.doi.org/10.1371/journal.ppat.1000778.
  • Wright J. 2010. The role of PML proteins in adenovirus type 5 infection and the type 1 interferon response. Ph.D. thesis. University of Warwick, Coventry, United Kingdom.
  • Morris SJ, Leppard KN. 2009. Adenovirus serotype 5 L4-22K and L4-33K proteins have distinct functions in regulating late gene expression. J Virol 83:3049–3058. http://dx.doi.org/10.1128/JVI.02455-08.
  • Lethbridge KJ, Scott GE, Leppard KN. 2003. Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J Gen Virol 84:259–268. http://dx.doi.org/10.1099/vir.0.18820-0.
  • Shi HX, Yang K, Liu X, Liu XY, Wei B, Shan YF, Zhu LH, Wang C. 2010. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol Cell Biol 30:2424–2436. http://dx.doi.org/10.1128/MCB.01466-09.
  • Han Q, Zhang C, Zhang J, Tian Z. 2011. Involvement of activation of PKR in HBx-siRNA-mediated innate immune effects on HBV inhibition. PLoS One 6:e27931. http://dx.doi.org/10.1371/journal.pone.0027931.
  • Vestergaard AL, Knudsen UB, Munk T, Rosbach H, Martensen PM. 2011. Transcriptional expression of type-I interferon response genes and stability of housekeeping genes in the human endometrium and endometriosis. Mol Hum Reprod 17:243–254. http://dx.doi.org/10.1093/molehr/gaq100.
  • Yang K, Shi HX, Liu XY, Shan YF, Wei B, Chen S, Wang C. 2009. TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol 182:3782–3792. http://dx.doi.org/10.4049/jimmunol.0803126.
  • Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D. 2005. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 289:L85–95. http://dx.doi.org/10.1152/ajplung.00397.2004.
  • de Oliveira DB, Almeida GM, Guedes AC, Santos FP, Bonjardim CA, Ferreira PC, Kroon EG. 2011. Basal activation of type I interferons (alpha2 and beta) and 2′5′OAS genes: insights into differential expression profiles of interferon system components in systemic sclerosis. Int J Rheumatol 2011:275617. http://dx.doi.org/10.1155/2011/275617.
  • Yun JJ, Tsao MS, Der SD. 2011. Differential utilization of NF-kappaB RELA and RELB in response to extracellular versus intracellular polyIC stimulation in HT1080 cells. BMC Immunol 12:15. http://dx.doi.org/10.1186/1471-2172-12-15.
  • O'Donnell SM, Holm GH, Pierce JM, Tian B, Watson MJ, Chari RS, Ballard DW, Brasier AR, Dermody TS. 2006. Identification of an NF-kappaB-dependent gene network in cells infected by mammalian reovirus. J Virol 80:1077–1086. http://dx.doi.org/10.1128/JVI.80.3.1077-1086.2006.
  • Park K-S, Kim H, Kim N-G, Cho SY, Seong JK, Paik Y-K. 2002. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatology 35:1459–1466. http://dx.doi.org/10.1053/jhep.2002.33204.
  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034. http://dx.doi.org/10.1186/gb-2002-3-7-research0034.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408. http://dx.doi.org/10.1006/meth.2001.1262.
  • Weinmann AS, Farnham PJ. 2002. Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation. Methods 26:37–47. http://dx.doi.org/10.1016/S1046-2023(02)00006-3.
  • Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349–360. http://dx.doi.org/10.1016/j.immuni.2006.08.009.
  • Panne D, Maniatis T, Harrison SC. 2007. An atomic model of the interferon-beta enhanceosome. Cell 129:1111–1123. http://dx.doi.org/10.1016/j.cell.2007.05.019.
  • Daly C, Reich NC. 1995. Characterization of specific DNA-binding factors activated by double-stranded RNA as positive regulators of interferon alpha/beta-stimulated genes. J Biol Chem 270:23739–23746. http://dx.doi.org/10.1074/jbc.270.40.23739.
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738. http://dx.doi.org/10.1038/35099560.
  • Sharma S, ten Oever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151. http://dx.doi.org/10.1126/science.1081315.
  • Basagoudanavar SH, Thapa RJ, Nogusa S, Wang J, Beg AA, Balachandran S. 2011. Distinct roles for the NF-kappa B RelA subunit during antiviral innate immune responses. J Virol 85:2599–2610. http://dx.doi.org/10.1128/JVI.02213-10.
  • Taniguchi T, Takaoka A. 2001. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2:378–386. http://dx.doi.org/10.1038/35073080.
  • Doucas V, Tini M, Egan DA, Evans RM. 1999. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci U S A 96:2627–2632. http://dx.doi.org/10.1073/pnas.96.6.2627.
  • Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W, Pandolfi PP. 2000. The function of PML in p53-dependent apoptosis. Nat Cell Biol 2:730–736. http://dx.doi.org/10.1038/35036365.
  • Pearson M, Carbone R, Sebastiani C, Cioce M, Fagioli M, Saito S, Higashimoto Y, Appella E, Minucci S, Pandolfi PP, Pelicci PG. 2000. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406:207–210. http://dx.doi.org/10.1038/35018127.
  • Wu WS, Xu ZX, Hittelman WN, Salomoni P, Pandolfi PP, Chang KS. 2003. Promyelocytic leukemia protein sensitizes tumor necrosis factor alpha-induced apoptosis by inhibiting the NF-kappaB survival pathway. J Biol Chem 278:12294–12304. http://dx.doi.org/10.1074/jbc.M211849200.
  • Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP. 1999. A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins. Nat Genet 23:287–295. http://dx.doi.org/10.1038/15463.
  • Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. 1998. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J 17:1087–1095. http://dx.doi.org/10.1093/emboj/17.4.1087.
  • Kaeser MD, Iggo RD. 2002. Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci U S A 99:95–100. http://dx.doi.org/10.1073/pnas.012283399.
  • Nisole S, Maroui MA, Mascle XH, Aubry M, Chelbi-Alix MK. 2013. Differential roles of PML isoforms. Front Oncol 3:125. http://dx.doi.org/10.3389/fonc.2013.00125.
  • Leppard KN, Wright J. 2012. Targeting of promyelocytic leukaemia proteins and promyelocytic leukaemia nuclear bodies by DNA tumour viruses, p 255–280. In Gaston K (ed), Small DNA tumour viruses. Caister Academic Press, Norfolk, United Kingdom.
  • Condemine W, Takahashi Y, Zhu J, Puvion-Dutilleul F, Guegan S, Janin A, de Thé H. 2006. Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66:6192–6198. http://dx.doi.org/10.1158/0008-5472.CAN-05-3792.
  • Cheng X, Kao HY. 2012. Microarray analysis revealing common and distinct functions of promyelocytic leukemia protein (PML) and tumor necrosis factor alpha (TNFα) signaling in endothelial cells. BMC Genomics 13:453. http://dx.doi.org/10.1186/1471-2164-13-453.
  • Schmitz ML, Indorf A, Limbourg FP, Städtler H, Traenckner EB, Baeuerle PA. 1996. The dual effect of adenovirus type 5 E1A 13S protein on NF-kappaB activation is antagonized by E1B 19K. Mol Cell Biol 16:4052–4063.
  • Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, Shimada N, Ohba Y, Takaoka A, Yoshida N, Taniguchi T. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–777. http://dx.doi.org/10.1038/nature03464.
  • Levy DE, Marié I, Smith E, Prakash A. 2002. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J Interferon Cytokine Res 22:87–93. http://dx.doi.org/10.1089/107999002753452692.
  • Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, Nakaya T, Katsuki M, Noguchi S, Tanaka N, Taniguchi T. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13:539–548. http://dx.doi.org/10.1016/S1074-7613(00)00053-4.
  • Chee AV, Lopez P, Pandolfi PP, Roizman B. 2003. Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol 77:7101–7105. http://dx.doi.org/10.1128/JVI.77.12.7101-7105.2003.
  • Nojima T, Oshiro-Ideue T, Nakanoya H, Kawamura H, Morimoto T, Kawaguchi Y, Kataoka N, Hagiwara M. 2009. Herpesvirus protein ICP27 switches PML isoform by altering mRNA splicing. Nucleic Acids Res 37:6515–6527. http://dx.doi.org/10.1093/nar/gkp633.
  • Bonilla WV, Pinschewer DD, Klenerman P, Rousson V, Gaboli M, Pandolfi PP, Zinkernagel RM, Salvato MS, Hengartner H. 2002. Effects of promyelocytic leukemia protein on virus-host balance. J Virol 76:3810–3818. http://dx.doi.org/10.1128/JVI.76.8.3810-3818.2002.
  • Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, van Dam H, van Ommen GJ, den Dunnen JT, Zantema A, 't Hoen PA. 2010. Genome-wide assessment of differential roles for p300 and CBP in transcription regulation. Nucleic Acids Res 38:5396–5408. http://dx.doi.org/10.1093/nar/gkq184.
  • Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D'Andrea A, Livingston DM. 1996. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 383:344–347. http://dx.doi.org/10.1038/383344a0.
  • Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE. 1996. Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling. Proc Natl Acad Sci U S A 93:15092–15096. http://dx.doi.org/10.1073/pnas.93.26.15092.
  • Bannister AJ, Kouzarides T. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643. http://dx.doi.org/10.1038/384641a0.
  • Kee BL, Arias J, Montminy MR. 1996. Adaptor-mediated recruitment of RNA polymerase II to a signal-dependent activator. J Biol Chem 271:2373–2375. http://dx.doi.org/10.1074/jbc.271.5.2373.
  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959. http://dx.doi.org/10.1016/S0092-8674(00)82001-2.
  • Berscheminski J, Groitl P, Dobner T, Wimmer P, Schreiner S. 2013. The adenoviral oncogene E1A-13S interacts with a specific isoform of the tumor suppressor PML to enhance viral transcription. J Virol 87:965–977. http://dx.doi.org/10.1128/JVI.02023-12.
  • Berk AJ. 2005. Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. Oncogene 24:7673–7685. http://dx.doi.org/10.1038/sj.onc.1209040.
  • Pelka P, Ablack JN, Fonseca GJ, Yousef AF, Mymryk JS. 2008. Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. J Virol 82:7252–7263. http://dx.doi.org/10.1128/JVI.00104-08.
  • Geng Y, Monajembashi S, Shao A, He W, Chen Z, Hemmerich P, Tang J. 2012. Contribution of the C-terminal regions of promyelocytic leukemia protein (PML) isoforms II and V to PML nuclear body formation. J Biol Chem 287:30729–30742. http://dx.doi.org/10.1074/jbc.M112.374769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.