41
Views
23
CrossRef citations to date
0
Altmetric
Article

Sox17-Mediated Maintenance of Fetal Intra-Aortic Hematopoietic Cell Clusters

, , , , , , , , , , & show all
Pages 1976-1990 | Received 16 Dec 2013, Accepted 11 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Dzierzak E, Speck NA. 2008. Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat. Immunol. 9:129–136. http://dx.doi.org/10.1038/ni1560.
  • de Bruijn MF, Speck NA, Peeters MC, Dzierzak E. 2000. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J. 19:2465–2474. http://dx.doi.org/10.1093/emboj/19.11.2465.
  • Medvinsky A, Dzierzak E. 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell 86:897–906. http://dx.doi.org/10.1016/S0092-8674(00)80165-8.
  • Ottersbach K, Dzierzak E. 2005. The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev. Cell 8:377–387. http://dx.doi.org/10.1016/j.devcel.2005.02.001.
  • Gekas C, Dieterlen-Lievre F, Orkin SH, Mikkola HK. 2005. The placenta is a niche for hematopoietic stem cells. Dev. Cell 8:365–375. http://dx.doi.org/10.1016/j.devcel.2004.12.016.
  • Kumaravelu P, Hook L, Morrison AM, Ure J, Zhao S, Zuyev S, Ansell J, Medvinsky A. 2002. Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129:4891–4899.
  • Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. 1994. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301. http://dx.doi.org/10.1016/1074-7613(94)90081-7.
  • Medvinsky A, Rybtsov S, Taoudi S. 2011. Embryonic origin of the adult hematopoietic system: advances and questions. Development 138:1017–1031. http://dx.doi.org/10.1242/dev.040998.
  • Bertrand JY, Giroux S, Golub R, Klaine M, Jalil A, Boucontet L, Godin I, Cumano A. 2005. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl. Acad. Sci. U. S. A. 102:134–139. http://dx.doi.org/10.1073/pnas.0402270102.
  • North TE, de Bruijn MF, Stacy T, Talebian L, Lind E, Robin C, Binder M, Dzierzak E, Speck NA. 2002. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672. http://dx.doi.org/10.1016/S1074-7613(02)00296-0.
  • Rybtsov S, Sobiesiak M, Taoudi S, Souilhol C, Senserrich J, Liakhovitskaia A, Ivanovs A, Frampton J, Zhao S, Medvinsky A. 2011. Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. J. Exp. Med. 208:1305–1315. http://dx.doi.org/10.1084/jem.20102419.
  • Godin I, Cumano A. 2002. The hare and the tortoise: an embryonic haematopoietic race. Nat. Rev. Immunol. 2:593–604. http://dx.doi.org/10.1038/nri857.
  • Jaffredo T, Nottingham W, Liddiard K, Bollerot K, Pouget C, de Bruijn M. 2005. From hemangioblast to hematopoietic stem cell: an endothelial connection? Exp. Hematol. 33:1029–1040. http://dx.doi.org/10.1016/j.exphem.2005.06.005.
  • Boisset J, van Cappellen W, Andrieu-Soler C, Galjart N, Dzierzak E, Robin C. 2010. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120. http://dx.doi.org/10.1038/nature08764.
  • Yokomizo T, Dzierzak E. 2010. Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development 137:3651–3661. http://dx.doi.org/10.1242/dev.051094.
  • Mizuochi C, Fraser S, Biasch K, Horio Y, Kikushige Y, Tani K, Akashi K, Tavian M, Sugiyama D. 2012. Intra-aortic clusters undergo endothelial to hematopoietic phenotypic transition during early embryogenesis. PLoS One 7:e35763. http://dx.doi.org/10.1371/journal.pone.0035763.
  • Chen M, Yokomizo T, Zeigler B, Dzierzak E, Speck N. 2009. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–891. http://dx.doi.org/10.1038/nature07619.
  • Robin C, Ottersbach K, Durand C, Peeters M, Vanes L, Tybulewicz V, Dzierzak E. 2006. An unexpected role for IL-3 in the embryonic development of hematopoietic stem cells. Dev. Cell 11:171–180. http://dx.doi.org/10.1016/j.devcel.2006.07.002.
  • Cai Z, de Bruijn M, Ma X, Dortland B, Luteijn T, Downing RJ, Dzierzak E. 2000. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. Immunity 13:423–431. http://dx.doi.org/10.1016/S1074-7613(00)00042-X.
  • Taoudi S, Gonneau C, Moore K, Sheridan JM, Blackburn CC, Taylor E, Medvinsky A. 2008. Extensive hematopoietic stem cell generation in the AGM region via maturation of VE-cadherin+ CD45+ pre-definitive HSCs. Cell Stem Cell 3:99–108. http://dx.doi.org/10.1016/j.stem.2008.06.004.
  • Tam P, Kanai-Azuma M, Kanai Y. 2003. Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Curr. Opin. Genet. Dev. 13:393–400. http://dx.doi.org/10.1016/S0959-437X(03)00085-6.
  • Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt L, Nishikawa S, Chiba T, Era T, Nishikawa S. 2005. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat. Biotechnol. 23:1542–1550. http://dx.doi.org/10.1038/nbt1167.
  • Kanai-Azuma M, Kanai Y, Gad J, Tajima Y, Taya C, Kurohmaru M, Sanai Y, Yonekawa H, Yazaki K, Tam P, Hayashi Y. 2002. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development 129:2367–2379.
  • Matsui T, Kanai-Azuma M, Hara K, Matoba S, Hiramatsu R, Kawakami H, Kurohmaru M, Koopman P, Kanai Y. 2006. Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice. J. Cell Sci. 119:3513–3526. http://dx.doi.org/10.1242/jcs.03081.
  • Hara K, Kanai-Azuma M, Uemura M, Shitara H, Taya C, Yonekawa H, Kawakami H, Tsunekawa N, Kurohmaru M, Kanai Y. 2009. Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis. Dev. Biol. 330:427–439. http://dx.doi.org/10.1016/j.ydbio.2009.04.012.
  • Uemura M, Hara K, Shitara H, Ishii R, Tsunekawa N, Miura Y, Kurohmaru M, Taya C, Yonekawa H, Kanai-Azuma M, Kanai Y. 2010. Expression and function of mouse Sox17 gene in the specification of gallbladder/bile-duct progenitors during early foregut morphogenesis. Biochem. Biophys. Res. Commun. 391:357–363. http://dx.doi.org/10.1016/j.bbrc.2009.11.063.
  • Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C, Pucéat M. 2009. Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. J. Cell Biol. 186:665–673. http://dx.doi.org/10.1083/jcb.200901040.
  • Schepers G, Teasdale R, Koopman P. 2002. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev. Cell 3:167–170. http://dx.doi.org/10.1016/S1534-5807(02)00223-X.
  • Francois M, Koopman P, Beltrame M. 2010. SoxF genes: key players in the development of the cardio-vascular system. Int. J. Biochem. Cell Biol. 42:445–448. http://dx.doi.org/10.1016/j.biocel.2009.08.017.
  • Gandillet A, Serrano A, Pearson S, Lie-A-Ling M, Lacaud G, Kouskoff V. 2009. Sox7-sustained expression alters the balance between proliferation and differentiation of hematopoietic progenitors at the onset of blood specification. Blood 114:4813–4822. http://dx.doi.org/10.1182/blood-2009-06-226290.
  • Serrano A, Gandillet A, Pearson S, Lacaud G, Kouskoff V. 2010. Contrasting effects of Sox17- and Sox18-sustained expression at the onset of blood specification. Blood 115:3895–3898. http://dx.doi.org/10.1182/blood-2009-10-247395.
  • Irion S, Clarke R, Luche H, Kim I, Morrison S, Fehling H, Keller G. 2010. Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 137:2829–2839. http://dx.doi.org/10.1242/dev.042119.
  • Kim I, Saunders T, Morrison S. 2007. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 130:470–483. http://dx.doi.org/10.1016/j.cell.2007.06.011.
  • He S, Kim I, Lim M, Morrison S. 2011. Sox17 expression confers self-renewal potential and fetal stem cell characteristics upon adult hematopoietic progenitors. Genes Dev. 25:1613–1627. http://dx.doi.org/10.1101/gad.2052911.
  • Nobuhisa I, Yamasaki S, Ahmed R, Taga T. 2012. CD45low c-Kithigh cells have hematopoietic property in the mouse aorta-gonad-mesonephros region. Exp. Cell Res. 318:705–715. http://dx.doi.org/10.1016/j.yexcr.2012.01.017.
  • Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H. 2003. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol. 31:1007–1014. http://dx.doi.org/10.1016/j.exphem.2003.07.005.
  • Hiramatsu R, Kanai Y, Mizukami T, Ishii M, Matoba S, Kanai-Azuma M, Kurohmaru M, Kawakami H, Hayashi Y. 2003. Regionally distinct potencies of mouse XY genital ridge to initiate testis differentiation dependent on anteroposterior axis. Dev. Dyn. 228:247–253. http://dx.doi.org/10.1002/dvdy.10379.
  • Morita S, Kojima T, Kitamura T. 2000. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7:1063–1066. http://dx.doi.org/10.1038/sj.gt.3301206.
  • Nobuhisa I, Kato R, Inoue H, Takizawa M, Okita K, Yoshimura A, Taga T. 2004. Spred-2 suppresses aorta-gonad-mesonephros hematopoiesis by inhibiting MAP kinase activation. J. Exp. Med. 199:737–742. http://dx.doi.org/10.1084/jem.20030830.
  • Nobuhisa I, Takizawa M, Takaki S, Inoue H, Okita K, Ueno M, Takatsu K, Taga T. 2003. Regulation of hematopoietic development in the aorta-gonad-mesonephros region mediated by Lnk adaptor protein. Mol. Cell. Biol. 23:8486–8494. http://dx.doi.org/10.1128/MCB.23.23.8486-8494.2003.
  • Palasingam P, Jauch R, Ng C, Kolatkar P. 2009. The structure of Sox17 bound to DNA reveals a conserved bending topology but selective protein interaction platforms. J. Mol. Biol. 388:619–630. http://dx.doi.org/10.1016/j.jmb.2009.03.055.
  • Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H, Nakauchi H. 2006. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J. 25:3515–3523. http://dx.doi.org/10.1038/sj.emboj.7601236.
  • Hosking B, François M, Wilhelm D, Orsenigo F, Caprini A, Svingen T, Tutt D, Davidson T, Browne C, Dejana E, Koopman P. 2009. Sox7 and Sox17 are strain-specific modifiers of the lymphangiogenic defects caused by Sox18 dysfunction in mice. Development 136:2385–2391. http://dx.doi.org/10.1242/dev.034827.
  • Pennisi D, Bowles J, Nagy A, Muscat G, Koopman P. 2000. Mice null for Sox18 are viable and display a mild coat defect. Mol. Cell. Biol. 20:9331–9336. http://dx.doi.org/10.1128/MCB.20.24.9331-9336.2000.
  • Hu WY, Myers CP, Kilzer JM, Pfaff SL, Bushman FD. 2002. Inhibition of retroviral pathogenesis by RNA interference. Curr. Biol. 12:1301–1311. http://dx.doi.org/10.1016/S0960-9822(02)00975-2.
  • Ng C, Yokomizo T, Yamashita N, Cirovic B, Jin H, Wen Z, Ito Y, Osato M. 2010. A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells 28:1869–1881. http://dx.doi.org/10.1002/stem.507.
  • Nakajima-Takagi Y, Osawa M, Oshima M, Takagi H, Miyagi S, Endoh M, Endo T, Takayama N, Eto K, Toyoda T, Koseki H, Nakauchi H, Iwama A. 2013. Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood 121:447–458. http://dx.doi.org/10.1182/blood-2012-05-431403.
  • Costa G, Mazan A, Gandillet A, Pearson S, Lacaud G, Kouskoff V. 2012. SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development 139:1587–1598. http://dx.doi.org/10.1242/dev.071282.
  • Corada M, Orsenigo F, Morini M, Pitulescu M, Bhat G, Nyqvist D, Breviario F, Conti V, Briot A, Iruela-Arispe M, Adams R, Dejana E. 2013. Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat. Commun. 4:2609. http://dx.doi.org/10.1038/ncomms3609.
  • Clarke R, Yzaguirre A, Yashiro-Ohtani Y, Bondue A, Blanpain C, Pear W, Speck N, Keller G. 2013. The expression of Sox17 identifies and regulates haemogenic endothelium. Nat. Cell Biol. 15:502–510. http://dx.doi.org/10.1038/ncb2724.
  • Robert-Moreno A, Guiu J, Ruiz-Herguido C, López M, Inglés-Esteve J, Riera L, Tipping A, Enver T, Dzierzak E, Gridley T, Espinosa L, Bigas A. 2008. Impaired embryonic haematopoiesis yet normal arterial development in the absence of the Notch ligand Jagged1. EMBO J. 27:1886–1895. http://dx.doi.org/10.1038/emboj.2008.113.
  • Kim P, Albacker C, Lu Y, Jang I, Lim Y, Heffner G, Arora N, Bowman T, Lin M, Lensch M, De Los Angeles A, Zon L, Loewer S, Daley G. 2013. Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proc. Natl. Acad. Sci. U. S. A. 110:E141–E150. http://dx.doi.org/10.1073/pnas.1214361110.
  • Sacilotto N, Monteiro R, Fritzsche M, Becker P, Sanchez-Del-Campo L, Liu K, Pinheiro P, Ratnayaka I, Davies B, Goding C, Patient R, Bou-Gharios G, De Val S. 2013. Analysis of Dll4 regulation reveals a combinatorial role for Sox and Notch in arterial development. Proc. Natl. Acad. Sci. U. S. A. 110:11893–11898. http://dx.doi.org/10.1073/pnas.1300805110.
  • Duong T, Koltowska K, Pichol-Thievend C, Le Guen L, Fontaine F, Smith K, Truong V, Skoczylas R, Stacker S, Achen M, Koopman P, Hogan B, Francois M. 2014. VEGFD regulates blood vascular development by modulating SOX18 activity. Blood 123:1102–1112. http://dx.doi.org/10.1182/blood-2013-04-495432.
  • Cermenati S, Moleri S, Neyt C, Bresciani E, Carra S, Grassini D, Omini A, Goi M, Cotelli F, François M, Hogan B, Beltrame M. 2013. Sox18 genetically interacts with VegfC to regulate lymphangiogenesis in zebrafish. Arterioscler. Thromb. Vasc. Biol. 33:1238–1247. http://dx.doi.org/10.1161/ATVBAHA.112.300254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.