51
Views
30
CrossRef citations to date
0
Altmetric
Article

RhoB Promotes γH2AX Dephosphorylation and DNA Double-Strand Break Repair

, , , , , , , & show all
Pages 3144-3155 | Received 19 Nov 2013, Accepted 28 May 2014, Published online: 20 Mar 2023

REFERENCES

  • Etienne-Manneville S, Hall A. 2002. Rho GTPases in cell biology. Nature 420:629–635. http://dx.doi.org/10.1038/nature01148.
  • Canguilhem B, Pradines A, Baudouin C, Boby C, Lajoie-Mazenc I, Charveron M, Favre G. 2005. RhoB protects human keratinocytes from UVB-induced apoptosis through epidermal growth factor receptor signaling. J. Biol. Chem. 280:43257–43263. http://dx.doi.org/10.1074/jbc.M508650200.
  • Fritz G, Kaina B, Aktories K. 1995. The ras-related small GTP-binding protein RhoB is immediate-early inducible by DNA damaging treatments. J. Biol. Chem. 270:25172–25177. http://dx.doi.org/10.1074/jbc.270.42.25172.
  • Adnane J, Muro-Cacho C, Mathews L, Sebti SM, Munoz-Antonia T. 2002. Suppression of rho B expression in invasive carcinoma from head and neck cancer patients. Clin. Cancer Res. 8:2225–2232.
  • Mazieres J, Tovar D, He B, Nieto-Acosta J, Marty-Detraves C, Clanet C, Pradines A, Jablons D, Favre G. 2007. Epigenetic regulation of RhoB loss of expression in lung cancer. BMC Cancer 7:220. http://dx.doi.org/10.1186/1471-2407-7-220.
  • Zhou J, Zhu Y, Zhang G, Liu N, Sun L, Liu M, Qiu M, Luo D, Tang Q, Liao Z, Zheng Y, Bi F. 2011. A distinct role of RhoB in gastric cancer suppression. Int. J. Cancer 128:1057–1068. http://dx.doi.org/10.1002/ijc.25445.
  • Bousquet E, Mazieres J, Privat M, Rizzati V, Casanova A, Ledoux A, Mery E, Couderc B, Favre G, Pradines A. 2009. Loss of RhoB expression promotes migration and invasion of human bronchial cells via activation of AKT1. Cancer Res. 69:6092–6099. http://dx.doi.org/10.1158/0008-5472.CAN-08-4147.
  • Huang M, Prendergast GC. 2006. RhoB in cancer suppression. Histol. Histopathol. 21:213–218.
  • Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. 2008. GammaH2AX and cancer. Nat. Rev. Cancer 8:957–967. http://dx.doi.org/10.1038/nrc2523.
  • Harper JW, Elledge SJ. 2007. The DNA damage response: ten years after. Mol. Cell 28:739–745. http://dx.doi.org/10.1016/j.molcel.2007.11.015.
  • Jeggo PA, Lobrich M. 2007. DNA double-strand breaks: their cellular and clinical impact? Oncogene 26:7717–7719. http://dx.doi.org/10.1038/sj.onc.1210868.
  • Lukas J, Lukas C, Bartek J. 2011. More than just a focus: the chromatin response to DNA damage and its role in genome integrity maintenance. Nat. Cell Biol. 13:1161–1169. http://dx.doi.org/10.1038/ncb2344.
  • Shiloh Y. 2006. The ATM-mediated DNA-damage response: taking shape. Trends Biochem. Sci. 31:402–410. http://dx.doi.org/10.1016/j.tibs.2006.05.004.
  • Freeman AK, Monteiro AN. 2010. Phosphatases in the cellular response to DNA damage. Cell Commun. Signal. 8:27. http://dx.doi.org/10.1186/1478-811X-8-27.
  • Chowdhury D, Keogh MC, Ishii H, Peterson CL, Buratowski S, Lieberman J. 2005. Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell 20:801–809. http://dx.doi.org/10.1016/j.molcel.2005.10.003.
  • Kalev P, Simicek M, Vazquez I, Munck S, Chen L, Soin T, Danda N, Chen W, Sablina A. 2012. Loss of PPP2R2A inhibits homologous recombination DNA repair and predicts tumor sensitivity to PARP inhibition. Cancer Res. 72:6414–6424. http://dx.doi.org/10.1158/0008-5472.CAN-12-1667.
  • Wang Q, Gao F, Wang T, Flagg T, Deng X. 2009. A nonhomologous end-joining pathway is required for protein phosphatase 2A promotion of DNA double-strand break repair. Neoplasia 11:1012–1021.
  • Pommier Y. 2006. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6:789–802. http://dx.doi.org/10.1038/nrc1977.
  • Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelnikova OA, Pilch DR, Rogakou EP, Celeste A, Chen HT, Nussenzweig A, Aladjem MI, Bonner WM, Pommier Y. 2003. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J. Biol. Chem. 278:20303–20312. http://dx.doi.org/10.1074/jbc.M300198200.
  • Sordet O, Redon CE, Guirouilh-Barbat J, Smith S, Solier S, Douarre C, Conti C, Nakamura AJ, Das BB, Nicolas E, Kohn KW, Bonner WM, Pommier Y. 2009. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10:887–893. http://dx.doi.org/10.1038/embor.2009.97.
  • Zhang YW, Regairaz M, Seiler JA, Agama KK, Doroshow JH, Pommier Y. 2011. Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res. 39:3607–3620. http://dx.doi.org/10.1093/nar/gkq1304.
  • Aris SM, Pommier Y. 2012. Potentiation of the novel topoisomerase I inhibitor indenoisoquinoline LMP-400 by the cell checkpoint and Chk1-Chk2 inhibitor AZD7762. Cancer Res. 72:979–989. http://dx.doi.org/10.1158/0008-5472.CAN-11-2579.
  • Kass EM, Ahn J, Tanaka T, Freed-Pastor WA, Keezer S, Prives C. 2007. Stability of checkpoint kinase 2 is regulated via phosphorylation at serine 456. J. Biol. Chem. 282:30311–30321. http://dx.doi.org/10.1074/jbc.M704642200.
  • Liu AX, Rane N, Liu JP, Prendergast GC. 2001. RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol. Cell. Biol. 21:6906–6912. http://dx.doi.org/10.1128/MCB.21.20.6906-6912.2001.
  • Aasen T, Izpisua Belmonte JC. 2010. Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat. Protoc. 5:371–382. http://dx.doi.org/10.1038/nprot.2009.241.
  • Dumay A, Laulier C, Bertrand P, Saintigny Y, Lebrun F, Vayssiere JL, Lopez BS. 2006. Bax and Bid, two proapoptotic Bcl-2 family members, inhibit homologous recombination, independently of apoptosis regulation. Oncogene 25:3196–3205. http://dx.doi.org/10.1038/sj.onc.1209344.
  • Rass E, Grabarz A, Plo I, Gautier J, Bertrand P, Lopez BS. 2009. Role of Mre11 in chromosomal nonhomologous end joining in mammalian cells. Nat. Struct. Mol. Biol. 16:819–824. http://dx.doi.org/10.1038/nsmb.1641.
  • Glorian V, Maillot G, Poles S, Iacovoni JS, Favre G, Vagner S. 2011. HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death Differ. 18:1692–1701. http://dx.doi.org/10.1038/cdd.2011.35.
  • Lajoie-Mazenc I, Tovar D, Penary M, Lortal B, Allart S, Favard C, Brihoum M, Pradines A, Favre G. 2008. MAP1A light chain-2 interacts with GTP-RhoB to control epidermal growth factor (EGF)-dependent EGF receptor signaling. J. Biol. Chem. 283:4155–4164. http://dx.doi.org/10.1074/jbc.M709639200.
  • Regairaz M, Zhang YW, Fu H, Agama KK, Tata N, Agrawal S, Aladjem MI, Pommier Y. 2011. Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I-DNA complexes. J. Cell Biol. 195:739–749. http://dx.doi.org/10.1083/jcb.201104003.
  • Cron KR, Zhu K, Kushwaha DS, Hsieh G, Merzon D, Rameseder J, Chen CC, D'Andrea AD, Kozono D. 2013. Proteasome inhibitors block DNA repair and radiosensitize non-small cell lung cancer. PLoS One 8:e73710. http://dx.doi.org/10.1371/journal.pone.0073710.
  • Lagarde P, Perot G, Kauffmann A, Brulard C, Dapremont V, Hostein I, Neuville A, Wozniak A, Sciot R, Schoffski P, Aurias A, Coindre JM, Debiec-Rychter M, Chibon F. 2012. Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors. Clin. Cancer Res. 18:826–838. http://dx.doi.org/10.1158/1078-0432.CCR-11-1610.
  • Ongusaha PP, Kim HG, Boswell SA, Ridley AJ, Der CJ, Dotto GP, Kim YB, Aaronson SA, Lee SW. 2006. RhoE is a pro-survival p53 target gene that inhibits ROCK I-mediated apoptosis in response to genotoxic stress. Curr. Biol. 16:2466–2472. http://dx.doi.org/10.1016/j.cub.2006.10.056.
  • Kim CH, Won M, Choi CH, Ahn J, Kim BK, Song KB, Kang CM, Chung KS. 2010. Increase of RhoB in gamma-radiation-induced apoptosis is regulated by c-Jun N-terminal kinase in Jurkat T cells. Biochem. Biophys. Res. Commun. 391:1182–1186. http://dx.doi.org/10.1016/j.bbrc.2009.12.012.
  • Westmark CJ, Bartleson VB, Malter JS. 2005. RhoB mRNA is stabilized by HuR after UV light. Oncogene 24:502–511. http://dx.doi.org/10.1038/sj.onc.1208224.
  • Brennan CM, Steitz JA. 2001. HuR and mRNA stability. Cell. Mol. Life Sci. 58:266–277. http://dx.doi.org/10.1007/PL00000854.
  • Masuda K, Abdelmohsen K, Kim MM, Srikantan S, Lee EK, Tominaga K, Selimyan R, Martindale JL, Yang X, Lehrmann E, Zhang Y, Becker KG, Wang JY, Kim HH, Gorospe M. 2011. Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation. EMBO J. 30:1040–1053. http://dx.doi.org/10.1038/emboj.2011.24.
  • Calaluce R, Gubin MM, Davis JW, Magee JD, Chen J, Kuwano Y, Gorospe M, Atasoy U. 2010. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer. BMC Cancer 10:126. http://dx.doi.org/10.1186/1471-2407-10-126.
  • Pommier Y, Sordet O, Rao VA, Zhang H, Kohn KW. 2005. Targeting chk2 kinase: molecular interaction maps and therapeutic rationale. Curr. Pharm. Des. 11:2855–2872. http://dx.doi.org/10.2174/1381612054546716.
  • Abdelmohsen K, Pullmann RJr, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, Furneaux H, Gorospe M. 2007. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 25:543–557. http://dx.doi.org/10.1016/j.molcel.2007.01.011.
  • Liu L, Rao JN, Zou T, Xiao L, Wang PY, Turner DJ, Gorospe M, Wang JY. 2009. Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Mol. Biol. Cell 20:4885–4898. http://dx.doi.org/10.1091/mbc.E09-07-0550.
  • Yu TX, Wang PY, Rao JN, Zou T, Liu L, Xiao L, Gorospe M, Wang JY. 2011. Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Res. 39:8472–8487. http://dx.doi.org/10.1093/nar/gkr567.
  • Takemura H, Rao VA, Sordet O, Furuta T, Miao ZH, Meng L, Zhang H, Pommier Y. 2006. Defective Mre11-dependent activation of Chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J. Biol. Chem. 281:30814–30823. http://dx.doi.org/10.1074/jbc.M603747200.
  • Melchionna R, Chen XB, Blasina A, McGowan CH. 2000. Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat. Cell Biol. 2:762–765. http://dx.doi.org/10.1038/35036406.
  • Lobrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA. 2010. GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9:662–669. http://dx.doi.org/10.4161/cc.9.4.10764.
  • Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y, Lobrich M, Jeggo PA. 2008. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31:167–177. http://dx.doi.org/10.1016/j.molcel.2008.05.017.
  • Khanna KK, Jackson SP. 2001. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27:247–254. http://dx.doi.org/10.1038/85798.
  • Pierce AJ, Johnson RD, Thompson LH, Jasin M. 1999. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 13:2633–2638. http://dx.doi.org/10.1101/gad.13.20.2633.
  • Guirouilh-Barbat J, Huck S, Bertrand P, Pirzio L, Desmaze C, Sabatier L, Lopez BS. 2004. Impact of the KU80 pathway on NHEJ-induced genome rearrangements in mammalian cells. Mol. Cell 14:611–623. http://dx.doi.org/10.1016/j.molcel.2004.05.008.
  • Guirouilh-Barbat J, Rass E, Plo I, Bertrand P, Lopez BS. 2007. Defects in XRCC4 and KU80 differentially affect the joining of distal nonhomologous ends. Proc. Natl. Acad. Sci. U. S. A. 104:20902–20907. http://dx.doi.org/10.1073/pnas.0708541104.
  • Al-Khalaf HH, Aboussekhra A. ATR controls the UV-related upregulation of the CDKN1A mRNA in a Cdk1/HuR-dependent manner. Mol. Carcinog., in press.
  • Kim HH, Abdelmohsen K, Gorospe M. 2010. Regulation of HuR by DNA damage response kinases. J. Nucleic Acids 2010:981487. http://dx.doi.org/10.4061/2010/981487.
  • Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, Helleday T. 2005. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat. Cell Biol. 7:195–201. http://dx.doi.org/10.1038/ncb1212.
  • Ward IM, Chen J. 2001. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276:47759–47762.
  • Limoli CL, Giedzinski E, Bonner WM, Cleaver JE. 2002. UV-induced replication arrest in the xeroderma pigmentosum variant leads to DNA double-strand breaks, gamma-H2AX formation, and Mre11 relocalization. Proc. Natl. Acad. Sci. U. S. A. 99:233–238. http://dx.doi.org/10.1073/pnas.231611798.
  • Frankenberg-Schwager M, Kirchermeier D, Greif G, Baer K, Becker M, Frankenberg D. 2005. Cisplatin-mediated DNA double-strand breaks in replicating but not in quiescent cells of the yeast Saccharomyces cerevisiae. Toxicology 212:175–184. http://dx.doi.org/10.1016/j.tox.2005.04.015.
  • Ader I, Delmas C, Bonnet J, Rochaix P, Favre G, Toulas C, Cohen-Jonathan-Moyal E. 2003. Inhibition of Rho pathways induces radiosensitization and oxygenation in human glioblastoma xenografts. Oncogene 22:8861–8869. http://dx.doi.org/10.1038/sj.onc.1207095.
  • Lee WJ, Kim DU, Lee MY, Choi KY. 2007. Identification of proteins interacting with the catalytic subunit of PP2A by proteomics. Proteomics 7:206–214. http://dx.doi.org/10.1002/pmic.200600480.
  • Helmink BA, Tubbs AT, Dorsett Y, Bednarski JJ, Walker LM, Feng Z, Sharma GG, McKinnon PJ, Zhang J, Bassing CH, Sleckman BP. 2011. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469:245–249. http://dx.doi.org/10.1038/nature09585.
  • Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW. 2008. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J. Biol. Chem. 283:1882–1892. http://dx.doi.org/10.1074/jbc.M709585200.
  • Plo I, Laulier C, Gauthier L, Lebrun F, Calvo F, Lopez BS. 2008. AKT1 inhibits homologous recombination by inducing cytoplasmic retention of BRCA1 and RAD51. Cancer Res. 68:9404–9412. http://dx.doi.org/10.1158/0008-5472.CAN-08-0861.
  • Chowdhury D, Xu X, Zhong X, Ahmed F, Zhong J, Liao J, Dykxhoorn DM, Weinstock DM, Pfeifer GP, Lieberman J. 2008. A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol. Cell 31:33–46. http://dx.doi.org/10.1016/j.molcel.2008.05.016.
  • Meyer N, Peyret-Lacombe A, Canguilhem B, Medale-Giamarchi C, Mamouni K, Cristini A, Monferran S, Lamant L, Filleron T, Pradines A, Sordet O, Favre G. 2014. RhoB promotes cancer initiation by protecting keratinocytes from UVB-induced apoptosis but limits tumor aggressiveness. J. Investig. Dermatol. 134:203–212. http://dx.doi.org/10.1038/jid.2013.278.
  • Wu X, Chen J. 2003. Autophosphorylation of checkpoint kinase 2 at serine 516 is required for radiation-induced apoptosis. J. Biol. Chem. 278:36163–36168. http://dx.doi.org/10.1074/jbc.M303795200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.