42
Views
30
CrossRef citations to date
0
Altmetric
Article

VRK2 Inhibits Mitogen-Activated Protein Kinase Signaling and Inversely Correlates with ErbB2 in Human Breast Cancer

, , &
Pages 4687-4697 | Received 09 Dec 2009, Accepted 16 Jul 2010, Published online: 20 Mar 2023

REFERENCES

  • Albanese, C., J. Johnson, G. Watanabe, N. Eklund, D. Vu, A. Arnold, and R. G. Pestell. 1995. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem. 270:23589–23597.
  • Amado, R. G., M. Wolf, M. Peeters, E. Van Cutsem, S. Siena, D. J. Freeman, T. Juan, R. Sikorski, S. Suggs, R. Radinsky, S. D. Patterson, and D. D. Chang. 2008. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26:1626–1634.
  • Benachenhou, N., S. Guiral, I. Gorska-Flipot, D. Labuda, and D. Sinnett. 1998. High resolution deletion mapping reveals frequent allelic losses at the DNA mismatch repair loci hMLH1 and hMSH3 in non-small cell lung cancer. Int. J. Cancer 77:173–180.
  • Blanco, S., L. Klimcakova, F. M. Vega, and P. A. Lazo. 2006. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J. 273:2487–2504.
  • Blanco, S., and P. A. Lazo. 2009. Vaccinia-related kinase-2. UCSD-Nature Molecule Page 10.1038/mp.a000905.01.
  • Blanco, S., C. Santos, and P. A. Lazo. 2007. Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol. Cell. Biol. 27:7273–7283.
  • Blanco, S., M. Sanz-Garcia, C. R. Santos, and P. A. Lazo. 2008. Modulation of interleukin-1 transcriptional response by the interaction between VRK2 and the JIP1 scaffold protein. PLoS One 3:e1660.
  • Bos, J. L. 1989. ras oncogenes in human cancer: a review. Cancer Res. 49:4682–4689.
  • Burgess, A. W. 2008. EGFR family: structure physiology signalling and therapeutic targets. Growth Factors 26:263–274.
  • Casar, B., I. Arozarena, V. Sanz-Moreno, A. Pinto, L. Agudo-Ibanez, R. Marais, R. E. Lewis, M. T. Berciano, and P. Crespo. 2009. Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol. Cell. Biol. 29:1338–1353.
  • Chen, C., R. E. Lewis, and M. A. White. 2008. IMP modulates KSR1-dependent multivalent complex formation to specify ERK1/2 pathway activation and response thresholds. J. Biol. Chem. 283:12789–12796.
  • de Muga, S. V., P. Timpson, L. Cubells, R. Evans, T. E. Hayes, C. Rentero, A. Hegemann, M. Reverter, J. Leschner, A. Pol, F. Tebar, R. J. Daly, C. Enrich, and T. Grewal. 2009. Annexin A6 inhibits Ras signalling in breast cancer cells. Oncogene 28:363–377.
  • Dhanasekaran, D. N., K. Kashef, C. M. Lee, H. Xu, and E. P. Reddy. 2007. Scaffold proteins of MAP-kinase modules. Oncogene 26:3185–3202.
  • Dhillon, A. S., S. Hagan, O. Rath, and W. Kolch. 2007. MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290.
  • Di Cosimo, S., and J. Baselga. 2008. Targeted therapies in breast cancer: where are we now? Eur. J. Cancer 44:2781–2790.
  • Fehrenbacher, N., D. Bar-Sagi, and M. Philips. 2009. Ras/MAPK signaling from endomembranes. Mol. Oncol. 3:297–307.
  • Gorjanacz, M., E. P. Klerkx, V. Galy, R. Santarella, C. Lopez-Iglesias, P. Askjaer, and I. W. Mattaj. 2008. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. EMBO J. 26:132–143.
  • Hynes, N. E., and H. A. Lane. 2005. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer. 5:341–354.
  • Ikediobi, O. N., H. Davies, G. Bignell, S. Edkins, C. Stevens, S. O'Meara, T. Santarius, T. Avis, S. Barthorpe, L. Brackenbury, G. Buck, A. Butler, J. Clements, J. Cole, E. Dicks, S. Forbes, K. Gray, K. Halliday, R. Harrison, K. Hills, J. Hinton, C. Hunter, A. Jenkinson, D. Jones, V. Kosmidou, R. Lugg, A. Menzies, T. Mironenko, A. Parker, J. Perry, K. Raine, D. Richardson, R. Shepherd, A. Small, R. Smith, H. Solomon, P. Stephens, J. Teague, C. Tofts, J. Varian, T. Webb, S. West, S. Widaa, A. Yates, W. Reinhold, J. N. Weinstein, M. R. Stratton, P. A. Futreal, and R. Wooster. 2006. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol. Cancer Ther. 5:2606–2612.
  • Jagemann, L. R., L. G. Perez-Rivas, E. J. Ruiz, J. A. Ranea, F. Sanchez-Jimenez, A. R. Nebreda, E. Alba, and J. Lozano. 2008. The functional interaction of 14-3-3 proteins with the ERK1/2 scaffold KSR1 occurs in an isoform-specific manner. J. Biol. Chem. 283:17450–17462.
  • Kang, T. H., D. Y. Park, W. Kim, and K. T. Kim. 2008. VRK1 phosphorylates CREB and mediates CCND1 expression. J. Cell Sci. 121:3035–3041.
  • Karapetis, C. S., S. Khambata-Ford, D. J. Jonker, C. J. O'Callaghan, D. Tu, N. C. Tebbutt, R. J. Simes, H. Chalchal, J. D. Shapiro, S. Robitaille, T. J. Price, L. Shepherd, H. J. Au, C. Langer, M. J. Moore, and J. R. Zalcberg. 2008. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N. Engl. J. Med. 359:1757–1765.
  • Karreth, F. A., G. M. DeNicola, S. P. Winter, and D. A. Tuveson. 2009. C-Raf inhibits MAPK activation and transformation by B-Raf(V600E). Mol. Cell 36:477–486.
  • Kizaka-Kondoh, S., K. Sato, K. Tamura, H. Nojima, and H. Okayama. 1992. Raf-1 protein kinase is an integral component of the oncogenic signal cascade shared by epidermal growth factor and platelet-derived growth factor. Mol. Cell. Biol. 12:5078–5086.
  • Kjellman, M., L. Roshani, B. T. Teh, O. P. Kallioniemi, A. Hoog, S. Gray, L. O. Farnebo, M. Holst, M. Backdahl, and C. Larsson. 1999. Genotyping of adrenocortical tumors: very frequent deletions of the MEN1 locus in 11q13 and of a 1-centimorgan region in 2p16. J. Clin. Endocrinol. Metab. 84:730–735.
  • Klerkx, E. P., P. A. Lazo, and P. Askjaer. 2009. Emerging biological functions of the Vaccinia-Related Kinase (VRK) family. Histol. Histopathol. 24:749–759.
  • Klijn, J. G., M. P. Look, H. Portengen, J. Alexieva-Figusch, W. L. van Putten, and J. A. Foekens. 1994. The prognostic value of epidermal growth factor receptor (EGF-R) in primary breast cancer: results of a 10 year follow-up study. Breast Cancer Res. Treat. 29:73–83.
  • Kolch, W. 2005. Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat. Rev. Mol. Cell Biol. 6:827–837.
  • Lopez-Borges, S., and P. A. Lazo. 2000. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene 19:3656–3664.
  • Martin, K. J., D. R. Patrick, M. J. Bissell, and M. V. Fournier. 2008. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS One 3:e2994.
  • Martinez-Carpio, P. A., C. Mur, P. Rosel, and M. A. Navarro. 1999. Constitutive and regulated secretion of epidermal growth factor and transforming growth factor-beta1 in MDA-MB-231 breast cancer cell line in 11-day cultures. Cell Signal. 11:753–757.
  • Martinez-Iglesias, O., S. Garcia-Silva, S. P. Tenbaum, J. Regadera, F. Larcher, J. M. Paramio, B. Vennstrom, and A. Aranda. 2009. Thyroid hormone receptor beta1 acts as a potent suppressor of tumor invasiveness and metastasis. Cancer Res. 69:501–509.
  • McKay, M. M., and D. K. Morrison. 2007. Integrating signals from RTKs to ERK/MAPK. Oncogene 26:3113–3121.
  • Michaloglou, C., L. C. Vredeveld, M. S. Soengas, C. Denoyelle, T. Kuilman, C. M. van der Horst, D. M. Majoor, J. W. Shay, W. J. Mooi, and D. S. Peeper. 2005. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724.
  • Muller, J., S. Ory, T. Copeland, H. Piwnica-Worms, and D. K. Morrison. 2001. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell 8:983–993.
  • Nichols, R. J., and P. Traktman. 2004. Characterization of three paralogous members of the mammalian vaccinia related kinase family. J. Biol. Chem. 279:7934–7946.
  • Nichols, R. J., M. S. Wiebe, and P. Traktman. 2006. The vaccinia-related kinases phosphorylate the N′ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol. Biol. Cell 17:2451–2464.
  • Patton, E. E., H. R. Widlund, J. L. Kutok, K. R. Kopani, J. F. Amatruda, R. D. Murphey, S. Berghmans, E. A. Mayhall, D. Traver, C. D. Fletcher, J. C. Aster, S. R. Granter, A. T. Look, C. Lee, D. E. Fisher, and L. I. Zon. 2005. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 15:249–254.
  • Rajakulendran, T., M. Sahmi, M. Lefrancois, F. Sicheri, and M. Therrien. 2009. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545.
  • Roberts, P. J., and C. J. Der. 2007. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26:3291–3310.
  • Salerno, M., D. Palmieri, A. Bouadis, D. Halverson, and P. S. Steeg. 2005. Nm23-H1 metastasis suppressor expression level influences the binding properties, stability, and function of the kinase suppressor of Ras1 (KSR1) Erk scaffold in breast carcinoma cells. Mol. Cell. Biol. 25:1379–1388.
  • Santos, C. R., M. Rodriguez-Pinilla, F. M. Vega, J. L. Rodriguez-Peralto, S. Blanco, A. Sevilla, A. Valbuena, T. Hernandez, A. J. van Wijnen, F. Li, E. de Alava, M. Sanchez-Cespedes, and P. A. Lazo. 2006. VRK1 signaling pathway in the context of the proliferation phenotype in head and neck squamous cell carcinoma. Mol. Cancer Res. 4:177–185.
  • Sevilla, A., C. R. Santos, R. Barcia, F. M. Vega, and P. A. Lazo. 2004. c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene 23:8950–8958.
  • Sevilla, A., C. R. Santos, F. M. Vega, and P. A. Lazo. 2004. Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J. Biol. Chem. 279:27458–27465.
  • Shin, S. Y., O. Rath, S. M. Choo, F. Fee, B. McFerran, W. Kolch, and K. H. Cho. 2009. Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J. Cell Sci. 122:425–435.
  • Valbuena, A., I. Lopez-Sanchez, and P. A. Lazo. 2008. Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS One 3:e1642.
  • Valbuena, A., A. Suarez-Gauthier, F. Lopez-Rios, A. Lopez-Encuentra, S. Blanco, P. L. Fernandez, M. Sanchez-Cespedes, and P. A. Lazo. 2007. Alteration of the VRK1-p53 autoregulatory loop in human lung carcinomas. Lung Cancer 58:303–309.
  • Valbuena, A., F. M. Vega, S. Blanco, and P. A. Lazo. 2006. p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol. Cell. Biol. 26:4782–4793.
  • Vega, F. M., P. Gonzalo, M. L. Gaspar, and P. A. Lazo. 2003. Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Lett. 544:176–180.
  • Vega, F. M., A. Sevilla, and P. A. Lazo. 2004. p53 stabilization and accumulation induced by human vaccinia-related kinase 1. Mol. Cell. Biol. 24:10366–10380.
  • Xing, H., K. Kornfeld, and A. J. Muslin. 1997. The protein kinase KSR interacts with 14-3-3 protein and Raf. Curr. Biol. 7:294–300.
  • Yarden, Y., and M. X. Sliwkowski. 2001. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2:127–137.
  • Yuste, L., J. C. Montero, A. Esparis-Ogando, and A. Pandiella. 2005. Activation of ErbB2 by overexpression or by transmembrane neuregulin results in differential signaling and sensitivity to herceptin. Cancer Res. 65:6801–6810.
  • Zandi, R., A. B. Larsen, P. Andersen, M. T. Stockhausen, and H. S. Poulsen. 2007. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell. Signal. 19:2013–2023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.