26
Views
9
CrossRef citations to date
0
Altmetric
Article

Activation of EphA Receptors Mediates the Recruitment of the Adaptor Protein Slap, Contributing to the Downregulation of N-Methyl-d-Aspartate Receptors

, , , , , & show all
Pages 1442-1455 | Received 03 Dec 2012, Accepted 24 Jan 2013, Published online: 20 Mar 2023

REFERENCES

  • Alifragis P, Molnar Z, Parnavelas JG. 2003. Restricted expression of Slap-1 in the rodent cerebral cortex. Gene Expr. Patterns 3:437–440.
  • Manes G, Bello P, Roche S. 2000. Slap negatively regulates Src mitogenic function but does not revert Src-induced cell morphology changes. Mol. Cell. Biol. 20:3396–3406.
  • Sosinowski T, Pandey A, Dixit VM, Weiss A. 2000. Src-like adaptor protein (SLAP) is a negative regulator of T cell receptor signaling. J. Exp. Med. 191:463–474.
  • Myers MD, Dragone LL, Weiss A. 2005. Src-like adaptor protein down-regulates T cell receptor (TCR)-CD3 expression by targeting TCRzeta for degradation. J. Cell Biol. 170:285–294.
  • Fu AK, Hung KW, Fu WY, Shen C, Chen Y, Xia J, Lai KO, Ip NY. 2011. APC(Cdh1) mediates EphA4-dependent downregulation of AMPA receptors in homeostatic plasticity. Nat. Neurosci. 14:181–189.
  • Pandey A, Duan H, Dixit VM. 1995. Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase. J. Biol. Chem. 270:19201–19204.
  • Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME. 2000. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956.
  • Irie F, Yamaguchi Y. 2004. EPHB receptor signaling in dendritic spine development. Front. Biosci. 9:1365–1373.
  • Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM. 2003. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163:1313–1326.
  • Murai KK, Pasquale EB. 2004. Eph receptors, ephrins, and synaptic function. Neuroscientist 10:304–314.
  • Gerlai R. 2001. Eph receptors and neural plasticity. Nat. Rev. Neurosci. 2:205–209.
  • Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, Pawson T. 2001. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32:1041–1056.
  • Contractor A, Rogers C, Maron C, Henkemeyer M, Swanson GT, Heinemann SF. 2002. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296:1864–1869.
  • Grunwald IC, Korte M, Adelmann G, Plueck A, Kullander K, Adams RH, Frotscher M, Bonhoeffer T, Klein R. 2004. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci. 7:33–40.
  • Calò L, Cinque C, Patane M, Schillaci D, Battaglia G, Melchiorri D, Nicoletti F, Bruno V. 2006. Interaction between ephrins/Eph receptors and excitatory amino acid receptors: possible relevance in the regulation of synaptic plasticity and in the pathophysiology of neuronal degeneration. J. Neurochem. 98:1–10.
  • Takasu MA, Dalva MB, Zigmond RE, Greenberg ME. 2002. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295:491–495.
  • Knöll B, Drescher U. 2002. Ephrin-As as receptors in topographic projections. Trends Neurosci. 25:145–149.
  • Dickson BJ. 2002. Molecular mechanisms of axon guidance. Science 298:1959–1964.
  • Klein R. 2004. Eph/ephrin signaling in morphogenesis, neural development and plasticity. Curr. Opin. Cell Biol. 16:580–589.
  • Martínez A, Soriano E. 2005. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res. Brain Res. Rev. 49:211–226.
  • Pasquale EB. 2005. Eph receptor signalling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6:462–475.
  • Pasquale EB. 1997. The Eph family of receptors. Curr. Opin. Cell Biol. 9:608–615.
  • Kayser MS, Nolt MJ, Dalva MB. 2008. EphB receptors couple dendritic filopodia motility to synapse formation. Neuron 59:56–69.
  • Akaneya Y, Sohya K, Kitamura A, Kimura F, Washburn C, Zhou R, Ninan I, Tsumoto T, Ziff EB. 2010. Ephrin-A5 and EphA5 interaction induces synaptogenesis during early hippocampal development. PLoS One 5:e12486. doi:10.1371/journal.pone.0012486.
  • Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. 2003. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6:153–160.
  • Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB. 2009. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc. Natl. Acad. Sci. U. S. A. 106:12524–12529.
  • Davy A, Gale NW, Murray EW, Klinghoffer RA, Soriano P, Feuerstein C, Robbins SM. 1999. Compartmentalized signaling by GPI-anchored ephrin-A5 requires the Fyn tyrosine kinase to regulate cellular adhesion. Genes Dev. 13:3125–3135.
  • Meima L, Kljavin IJ, Moran P, Shih A, Winslow JW, Caras IW. 1997. AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton. Eur. J. Neurosci. 9:177–188.
  • Gao WQ, Shinsky N, Armanini MP, Moran P, Zheng JL, Mendoza-Ramirez JL, Phillips HS, Winslow JW, Caras IW. 1998. Regulation of hippocampal synaptic plasticity by the tyrosine kinase receptor, REK7/EphA5, and its ligand, AL-1/Ephrin-A5. Mol. Cell. Neurosci. 11:247–259.
  • Waxman SJ, Kukanich B, Milligan M, Beard WL, Davis EG. 2012. Pharmacokinetics of concurrently administered intravenous lidocaine and flunixin in healthy horses. J. Vet. Pharmacol. Ther. 35:413–416.
  • Hajós F. 1975. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 93:485–489.
  • Chen Y, Stevens B, Chang J, Milbrandt J, Barres BA, Hell JW. 2008. NS21: re-defined and modified supplement B27 for neuronal cultures. J. Neurosci. Methods 171:239–247.
  • Erreger K, Geballe MT, Kristensen A, Chen PE, Hansen KB, Lee CJ, Yuan H, Le P, Lyuboslavsky PN, Micale N, Jorgensen L, Clausen RP, Wyllie DJ, Snyder JP, Traynelis SF. 2007. Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol. Pharmacol. 72:907–920.
  • Chen PE, Geballe MT, Katz E, Erreger K, Livesey MR, O'Toole KK, Le P, Lee CJ, Snyder JP, Traynelis SF, Wyllie DJ. 2008. Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586:227–245.
  • Wanisch K, Yanez-Munoz RJ. 2009. Integration-deficient lentiviral vectors: a slow coming of age. Mol. Ther. 17:1316–1332.
  • Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, Buch P, MacLaren RE, Anderson PN, Barker SE, Duran Y, Bartholomae C, von Kalle C, Heckenlively JR, Kinnon C, Ali RR, Thrasher AJ. 2006. Effective gene therapy with nonintegrating lentiviral vectors. Nat. Med. 12:348–353.
  • Bolte S, Cordelieres FP. 2006. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224:213–232.
  • Wagey R, Hu J, Pelech SL, Raymond LA, Krieger C. 2001. Modulation of NMDA-mediated excitotoxicity by protein kinase C. J. Neurochem. 78:715–726.
  • Cesca F, Baldelli P, Valtorta F, Benfenati F. 2010. The synapsins: key actors of synapse function and plasticity. Prog. Neurobiol. 91:313–348.
  • Yun ME, Johnson RR, Antic A, Donoghue MJ. 2003. EphA family gene expression in the developing mouse neocortex: regional patterns reveal intrinsic programs and extrinsic influence. J. Comp. Neurol. 456:203–216.
  • Fu AK, Ip NY. 2007. Cyclin-dependent kinase 5 links extracellular cues to actin cytoskeleton during dendritic spine development. Cell Adh. Migr. 1:110–112.
  • Fu CT, Tran T, Sretavan D. 2010. Axonal/glial upregulation of EphB/ephrin-B signaling in mouse experimental ocular hypertension. Invest. Ophthalmol. Vis. Sci. 51:991–1001.
  • O'Brien RJ, Mammen AL, Blackshaw S, Ehlers MD, Rothstein JD, Huganir RL. 1997. The development of excitatory synapses in cultured spinal neurons. J. Neurosci. 17:7339–7350.
  • Papa M, Bundman MC, Greenberger V, Segal M. 1995. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J. Neurosci. 15:1–11.
  • Gerlai R, Shinsky N, Shih A, Williams P, Winer J, Armanini M, Cairns B, Winslow J, Gao W, Phillips HS. 1999. Regulation of learning by EphA receptors: a protein targeting study. J. Neurosci. 19:9538–9549.
  • Davis S, Gale NW, Aldrich TH, Maisonpierre PC, Lhotak V, Pawson T, Goldfarb M, Yancopoulos GD. 1994. Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819.
  • Pasquale EB. 2004. Eph-ephrin promiscuity is now crystal clear. Nat. Neurosci. 7:417–418.
  • Flanagan JG, Vanderhaeghen P. 1998. The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21:309–345.
  • Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, Greenberg ME. 2005. Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron 46:205–217.
  • Chen C, Leonard JP. 1996. Protein tyrosine kinase-mediated potentiation of currents from cloned NMDA receptors. J. Neurochem. 67:194–200.
  • Zheng F, Gingrich MB, Traynelis SF, Conn PJ. 1998. Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat. Neurosci. 1:185–191.
  • Kim HJ, Zou W, Ito Y, Kim SY, Chappel J, Ross FP, Teitelbaum SL. 2010. Src-like adaptor protein regulates osteoclast generation and survival. J. Cell. Biochem. 110:201–209.
  • Lau A, Tymianski M. 2010. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460:525–542.
  • Raymond LA, Tingley WG, Blackstone CD, Roche KW, Huganir RL. 1994. Glutamate receptor modulation by protein phosphorylation. J. Physiol. Paris 88:181–192.
  • Grant ER, Bacskai BJ, Anegawa NJ, Pleasure DE, Lynch DR. 1998. Opposing contributions of NR1 and NR2 to protein kinase C modulation of NMDA receptors. J. Neurochem. 71:1471–1481.
  • Raymond LA, Moshaver A, Tingley WG, Huganir RL. 1996. Glutamate receptor ion channel properties predict vulnerability to cytotoxicity in a transfected nonneuronal cell line. Mol. Cell. Neurosci. 7:102–115.
  • Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG. 2000. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 26:659–670.
  • Kato A, Rouach N, Nicoll RA, Bredt DS. 2005. Activity-dependent NMDA receptor degradation mediated by retrotranslocation and ubiquitination. Proc. Natl. Acad. Sci. U. S. A. 102:5600–5605.
  • Ehlers MD. 2003. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6:231–242.
  • Wang Y, Ota S, Kataoka H, Kanamori M, Li Z, Band H, Tanaka M, Sugimura H. 2002. Negative regulation of EphA2 receptor by Cbl. Biochem. Biophys. Res. Commun. 296:214–220.
  • Walker-Daniels J, Riese DJ, Kinch MS. 2002. c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Mol. Cancer Res. 1:79–87.
  • Dragone LL, Myers MD, White C, Gadwal S, Sosinowski T, Gu H, Weiss A. 2006. Src-like adaptor protein (SLAP) regulates B cell receptor levels in a c-Cbl-dependent manner. Proc. Natl. Acad. Sci. U. S. A. 103:18202–18207.
  • Dragone LL, Shaw LA, Myers MD, Weiss A. 2009. SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking. Immunol. Rev. 232:218–228.
  • Kalo MS, Pasquale EB. 1999. Signal transfer by eph receptors. Cell Tissue Res. 298:1–9.
  • Wang YT, Salter MW. 1994. Regulation of NMDA receptors by tyrosine kinases and phosphatases. Nature 369:233–235.
  • Mulvey CS, Zhang K, Liu WH, Waxman DJ, Bigio IJ. 2011. Wavelength-dependent backscattering measurements for quantitative monitoring of apoptosis, Part 1: early and late spectral changes are indicative of the presence of apoptosis in cell cultures. J. Biomed. Opt. 16:117001. doi:10.1117/1.3644389.
  • Arunachalam S, Waxman SR. 2011. Grammatical form and semantic context in verb learning. Lang. Learn. Dev. 7:169–184.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.