32
Views
23
CrossRef citations to date
0
Altmetric
Article

Caveolin-1 Is Required for Kinase Suppressor of Ras 1 (KSR1)-Mediated Extracellular Signal-Regulated Kinase 1/2 Activation, H-RasV12-Induced Senescence, and Transformation

, , , , , & show all
Pages 3461-3472 | Received 10 Dec 2013, Accepted 25 Jun 2014, Published online: 20 Mar 2023

REFERENCES

  • Anderson RG. 1998. The caveolae membrane system. Annu. Rev. Biochem. 67:199–225. http://dx.doi.org/10.1146/annurev.biochem.67.1.199.
  • Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV. 1995. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol. Biol. Cell 6:911–927. http://dx.doi.org/10.1091/mbc.6.7.911.
  • Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, Lisanti MP. 1995. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc. Natl. Acad. Sci. U. S. A. 92:9407–9411. http://dx.doi.org/10.1073/pnas.92.20.9407.
  • Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP. 1997. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272:29337–29346. http://dx.doi.org/10.1074/jbc.272.46.29337.
  • Okamoto T, Schlegel A, Scherer PE, Lisanti MP. 1998. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273:5419–5422. http://dx.doi.org/10.1074/jbc.273.10.5419.
  • Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP. 1999. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell. Biol. 19:7289–7304.
  • Navarro A, Anand-Apte B, Parat MO. 2004. A role for caveolae in cell migration. FASEB J. 18:1801–1811. http://dx.doi.org/10.1096/fj.04-2516rev.
  • Parton RG, Simons K. 2007. The multiple faces of caveolae. Nat. Rev. Mol. Cell. Biol. 8:185–194. http://dx.doi.org/10.1038/nrm2122.
  • Williams TM, Lisanti MP. 2005. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am. J. Physiol. Cell Physiol. 288:C494–C506. http://dx.doi.org/10.1152/ajpcell.00458.2004.
  • Aung CS, Hill MM, Bastiani M, Parton RG, Parat MO. 2011. PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: role of matrix metalloprotease 9. Eur. J. Cell Biol. 90:136–142. http://dx.doi.org/10.1016/j.ejcb.2010.06.004.
  • Steffens S, Schrader AJ, Blasig H, Vetter G, Eggers H, Trankenschuh W, Kuczyk MA, Serth J. 2011. Caveolin 1 protein expression in renal cell carcinoma predicts survival. BMC Urol. 11:25. http://dx.doi.org/10.1186/1471-2490-11-25.
  • Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP. 1998. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett. 428:205–211.
  • Engelman JA, Lee RJ, Karnezis A, Bearss DJ, Webster M, Siegel P, Muller WJ, Windle JJ, Pestell RG, Lisanti MP. 1998. Reciprocal regulation of Neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J. Biol. Chem. 273:20448–20455. http://dx.doi.org/10.1074/jbc.273.32.20448.
  • Engelman JA, Wykoff CC, Yasuhara S, Song KS, Okamoto T, Lisanti MP. 1997. Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J. Biol. Chem. 272:16374–16381. http://dx.doi.org/10.1074/jbc.272.26.16374.
  • Wary KK, Mainiero F, Isakoff SJ, Marcantonio EE, Giancotti FG. 1996. The adaptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell 87:733–743. http://dx.doi.org/10.1016/S0092-8674(00)81392-6.
  • Wary KK, Mariotti A, Zurzolo C, Giancotti FG. 1998. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94:625–634. http://dx.doi.org/10.1016/S0092-8674(00)81604-9.
  • Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA. 1999. A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J. Cell Biol. 144:1285–1294. http://dx.doi.org/10.1083/jcb.144.6.1285.
  • Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, Lisanti MP. 2003. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am. J. Physiol. Cell Physiol. 284:C457–C474. http://dx.doi.org/10.1152/ajpcell.00380.2002.
  • Fiucci G, Ravid D, Reich R, Liscovitch M. 2002. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21:2365–2375. http://dx.doi.org/10.1038/sj.onc.1205300.
  • Gosens R, Stelmack GL, Dueck G, McNeill KD, Yamasaki A, Gerthoffer WT, Unruh H, Gounni AS, Zaagsma J, Halayko AJ. 2006. Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 291:L523–L534. http://dx.doi.org/10.1152/ajplung.00013.2006.
  • Williams TM, Lee H, Cheung MW, Cohen AW, Razani B, Iyengar P, Scherer PE, Pestell RG, Lisanti MP. 2004. Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J. Biol. Chem. 279:24745–24756. http://dx.doi.org/10.1074/jbc.M402064200.
  • Engelman JA, Zhang XL, Razani B, Pestell RG, Lisanti MP. 1999. p42/44 MAP kinase-dependent and -independent signaling pathways regulate caveolin-1 gene expression. Activation of Ras-MAP kinase and protein kinase a signaling cascades transcriptionally down-regulates caveolin-1 promoter activity. J. Biol. Chem. 274:32333–32341. http://dx.doi.org/10.1074/jbc.274.45.32333.
  • Sasai K, Kakumoto K, Hanafusa H, Akagi T. 2007. The Ras-MAPK pathway downregulates caveolin-1 in rodent fibroblast but not in human fibroblasts: implications in the resistance to oncogene-mediated transformation. Oncogene 26:449–455. http://dx.doi.org/10.1038/sj.onc.1209792.
  • Liu P, Ying Y, Anderson RG. 1997. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc. Natl. Acad. Sci. U. S. A. 94:13666–13670. http://dx.doi.org/10.1073/pnas.94.25.13666.
  • Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP. 1996. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271:9690–9697.
  • Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, Nambiar SC, Lind EF, Silvester J, Fleming CK, Rufini A, Tusche MW, Brustle A, Ohashi PS, Lewis JD, Mak TW. 2012. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of α5-integrin and the activation of Src, Ras and Erk. Oncogene 31:884–896. http://dx.doi.org/10.1038/onc.2011.288.
  • Chen J, Chen JK, Harris RC. 2012. Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway. Mol. Cell. Biol. 32:981–991. http://dx.doi.org/10.1128/MCB.06410-11.
  • Park JH, Ryu JM, Han HJ. 2011. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J. Cell Physiol. 226:267–275. http://dx.doi.org/10.1002/jcp.22338.
  • Ryu JM, Han HJ. 2011. L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J. Biol. Chem. 286:23667–23678. http://dx.doi.org/10.1074/jbc.M110.216283.
  • Kortum RL, Lewis RE. 2004. The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol. Cell. Biol. 24:4407–4416. http://dx.doi.org/10.1128/MCB.24.10.4407-4416.2004.
  • Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, Afkarian M, Muller WJ, Murphy KM, Morrison DK, Lewis RE, McNeish J, Shaw AS. 2002. Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol. Cell. Biol. 22:3035–3045. http://dx.doi.org/10.1128/MCB.22.9.3035-3045.2002.
  • Roy F, Laberge G, Douziech M, Ferland-McCollough D, Therrien M. 2002. KSR is a scaffold required for activation of the ERK/MAPK module. Genes Dev. 16:427–438. http://dx.doi.org/10.1101/gad.962902.
  • Kortum RL, Costanzo DL, Haferbier J, Schreiner SJ, Razidlo GL, Wu MH, Volle DJ, Mori T, Sakaue H, Chaika NV, Chaika OV, Lewis RE. 2005. The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates adipogenesis. Mol. Cell. Biol. 25:7592–7604. http://dx.doi.org/10.1128/MCB.25.17.7592-7604.2005.
  • Kortum RL, Johnson HJ, Costanzo DL, Volle DJ, Razidlo GL, Fusello AM, Shaw AS, Lewis RE. 2006. The molecular scaffold kinase suppressor of Ras 1 is a modifier of RasV12-induced and replicative senescence. Mol. Cell. Biol. 26:2202–2214. http://dx.doi.org/10.1128/MCB.26.6.2202-2214.2006.
  • Lozano J, Xing R, Cai Z, Jensen HL, Trempus C, Mark W, Cannon R, Kolesnick R. 2003. Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Cancer Res. 63:4232–4238.
  • Joneson T, Fulton JA, Volle DJ, Chaika OV, Bar-Sagi D, Lewis RE. 1998. Kinase suppressor of Ras inhibits the activation of extracellular ligand-regulated (ERK) mitogen-activated protein (MAP) kinase by growth factors, activated Ras, and Ras effectors. J. Biol. Chem. 273:7743–7748. http://dx.doi.org/10.1074/jbc.273.13.7743.
  • Sordella R, Jiang W, Chen GC, Curto M, Settleman J. 2003. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 113:147–158. http://dx.doi.org/10.1016/S0092-8674(03)00271-X.
  • Li S, Couet J, Lisanti MP. 1996. Src tyrosine kinases, Gα subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J. Biol. Chem. 271:29182–29190. http://dx.doi.org/10.1074/jbc.274.45.32333.
  • Mineo C, James GL, Smart EJ, Anderson RG. 1996. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem. 271:11930–11935. http://dx.doi.org/10.1074/jbc.271.20.11930.
  • Rybin VO, Xu X, Steinberg SF. 1999. Activated protein kinase C isoforms target to cardiomyocyte caveolae: stimulation of local protein phosphorylation. Circ. Res. 84:980–988. http://dx.doi.org/10.1161/01.RES.84.9.980.
  • Agelaki S, Spiliotaki M, Markomanolaki H, Kallergi G, Mavroudis D, Georgoulias V, Stournaras C. 2009. Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol. Ther. 8:1470–1477. http://dx.doi.org/10.4161/cbt.8.15.8939.
  • Furuchi T, Anderson RG. 1998. Cholesterol depletion of caveolae causes hyperactivation of extracellular signal-related kinase (ERK). J. Biol. Chem. 273:21099–21104. http://dx.doi.org/10.1074/jbc.273.33.21099.
  • Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK. 2001. C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol. Cell 8:983–993. http://dx.doi.org/10.1016/S1097-2765(01)00383-5.
  • Koveal D, Schuh-Nuhfer N, Ritt D, Page R, Morrison DK, Peti W. 2012. A CC-SAM, for coiled coil-sterile alpha motif, domain targets the scaffold KSR-1 to specific sites in the plasma membrane. Sci. Signal. 5:ra94. http://dx.doi.org/10.1126/scisignal.2003289.
  • Zhou M, Horita DA, Waugh DS, Byrd RA, Morrison DK. 2002. Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). J. Mol. Biol. 315:435–446. http://dx.doi.org/10.1006/jmbi.2001.5263.
  • Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP. 1997. Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem. 272:6525–6533. http://dx.doi.org/10.1074/jbc.272.10.6525.
  • Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM. 1995. KSR, a novel protein kinase required for RAS signal transduction. Cell 83:879–888. http://dx.doi.org/10.1016/0092-8674(95)90204-X.
  • Cacace AM, Michaud NR, Therrien M, Mathes K, Copeland T, Rubin GM, Morrison DK. 1999. Identification of constitutive and ras-inducible phosphorylation sites of KSR: implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression. Mol. Cell. Biol. 19:229–240.
  • Therrien M, Michaud NR, Rubin GM, Morrison DK. 1996. KSR modulates signal propagation within the MAPK cascade. Genes Dev. 10:2684–2695. http://dx.doi.org/10.1101/gad.10.21.2684.
  • Ferbeyre G, de Stanchina E, Lin AW, Querido E, McCurrach ME, Hannon GJ, Lowe SW. 2002. Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol. 22:3497–3508. http://dx.doi.org/10.1128/MCB.22.10.3497-3508.2002.
  • Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. 2000. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14:2015–2027.
  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW. 1998. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12:3008–3019. http://dx.doi.org/10.1101/gad.12.19.3008.
  • Malumbres M, Perez De CastroI, Hernandez MI, Jimenez M, Corral T, Pellicer A. 2000. Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15INK4b. Mol. Cell. Biol. 20:2915–2925. http://dx.doi.org/10.1128/MCB.20.8.2915-2925.2000.
  • Palmero I, Pantoja C, Serrano M. 1998. p19ARF links the tumour suppressor p53 to Ras. Nature 395:125–126. http://dx.doi.org/10.1038/25870.
  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602. http://dx.doi.org/10.1016/S0092-8674(00)81902-9.
  • Zhu J, Woods D, McMahon M, Bishop JM. 1998. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12:2997–3007. http://dx.doi.org/10.1101/gad.12.19.2997.
  • Pirkmajer S, Chibalin AV. 2011. Serum starvation: caveat emptor. Am. J. Physiol. Cell Physiol. 301:C272–C279. http://dx.doi.org/10.1152/ajpcell.00091.2011.
  • Fisher KW, Das B, Kortum RL, Chaika OV, Lewis RE. 2011. Kinase suppressor of Ras 1 (KSR1) regulates PGC1α and estrogen-related receptor alpha to promote oncogenic Ras-dependent anchorage-independent growth. Mol. Cell. Biol. 31:2453–2461. http://dx.doi.org/10.1128/MCB.05255-11.
  • Downward J. 1995. KSR: a novel player in the RAS pathway. Cell 83:831–834. http://dx.doi.org/10.1016/0092-8674(95)90198-1.
  • Sundaram M, Han M. 1995. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83:889–901. http://dx.doi.org/10.1016/0092-8674(95)90205-8.
  • Stewart S, Sundaram M, Zhang Y, Lee J, Han M, Guan KL. 1999. Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol. Cell. Biol. 19:5523–5534.
  • Kurzchalia TV, Parton RG. 1999. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11:424–431. http://dx.doi.org/10.1016/S0955-0674(99)80061-1.
  • Lisanti MP, Tang Z, Scherer PE, Kubler E, Koleske AJ, Sargiacomo M. 1995. Caveolae, transmembrane signalling and cellular transformation. Mol. Membr. Biol. 12:121–124. http://dx.doi.org/10.3109/09687689509038506.
  • McKay MM, Ritt DA, Morrison DK. 2009. Signaling dynamics of the KSR1 scaffold complex. Proc. Natl. Acad. Sci. U. S. A. 106:11022–11027. http://dx.doi.org/10.1073/pnas.0901590106.
  • Capozza F, Williams TM, Schubert W, McClain S, Bouzahzah B, Sotgia F, Lisanti MP. 2003. Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am. J. Pathol. 162:2029–2039. http://dx.doi.org/10.1016/S0002-9440(10)64335-0.
  • Fernandez MR, Henry MD, Lewis RE. 2012. Kinase suppressor of Ras 2 (KSR2) regulates tumor cell transformation via AMPK. Mol. Cell. Biol. 32:3718–3731. http://dx.doi.org/10.1128/MCB.06754-11.
  • Casar B, Arozarena I, Sanz-Moreno V, Pinto A, Agudo-Ibanez L, Marais R, Lewis RE, Berciano MT, Crespo P. 2009. Ras subcellular localization defines extracellular signal-regulated kinase 1 and 2 substrate specificity through distinct utilization of scaffold proteins. Mol. Cell. Biol. 29:1338–1353. http://dx.doi.org/10.1128/MCB.01359-08.
  • Muller J, Cacace AM, Lyons WE, McGill CB, Morrison DK. 2000. Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol. Cell. Biol. 20:5529–5539. http://dx.doi.org/10.1128/MCB.20.15.5529-5539.2000.
  • Brennan JA, Volle DJ, Chaika OV, Lewis RE. 2002. Phosphorylation regulates the nucleocytoplasmic distribution of kinase suppressor of Ras. J. Biol. Chem. 277:5369–5377. http://dx.doi.org/10.1074/jbc.M109875200.
  • Byrne DP, Dart C, Rigden DJ. 2012. Evaluating caveolin interactions: do proteins interact with the caveolin scaffolding domain through a widespread aromatic residue-rich motif? PLoS One 7:e44879. http://dx.doi.org/10.1371/journal.pone.0044879.
  • Collins BM, Davis MJ, Hancock JF, Parton RG. 2012. Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? Dev. Cell 23:11–20. http://dx.doi.org/10.1016/j.devcel.2012.06.012.
  • Hu J, Yu H, Kornev AP, Zhao J, Filbert EL, Taylor SS, Shaw AS. 2011. Mutation that blocks ATP binding creates a pseudokinase stabilizing the scaffolding function of kinase suppressor of Ras, CRAF and BRAF. Proc. Natl. Acad. Sci. U. S. A. 108:6067–6072. http://dx.doi.org/10.1073/pnas.1102554108.
  • Rajakulendran T, Sahmi M, Lefrancois M, Sicheri F, Therrien M. 2009. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–545. http://dx.doi.org/10.1038/nature08314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.