8
Views
63
CrossRef citations to date
0
Altmetric
Article

E Proteins and Id2 Converge on p57Kip2 To Regulate Cell Cycle in Neural Cells

, , &
Pages 4351-4361 | Received 05 Sep 2005, Accepted 05 Mar 2006, Published online: 27 Mar 2023

REFERENCES

  • Alheim, K., J. Corness, M. K. Samuelsson, L. G. Bladh, T. Murata, T. Nilsson, and S. Okret. 2003. Identification of a functional glucocorticoid response element in the promoter of the cyclin-dependent kinase inhibitor p57Kip2. J. Mol. Endocrinol. 30:359–368.
  • Bain, G., and C. Murre. 1998. The role of E-proteins in B- and T-lymphocyte development. Semin. Immunol. 10:143–153.
  • Benezra, R., R. L. Davis, D. Lockshon, D. L. Turner, and H. Weintraub. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49–59.
  • Caspary, T., M. A. Cleary, E. J. Perlman, P. Zhang, S. J. Elledge, and S. M. Tilghman. 1999. Oppositely imprinted genes p57(Kip2) and igf2 interact in a mouse model for Beckwith-Wiedemann syndrome. Genes Dev. 13:3115–3124.
  • Chung, W. Y., L. Yuan, L. Feng, T. Hensle, and B. Tycko. 1996. Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms' tumors. Hum. Mol. Genet. 5:1101–1108.
  • Dahmane, N., P. Sanchez, Y. Gitton, V. Palma, T. Sun, M. Beyna, H. Weiner, and A. Ruiz i Altaba. 2001. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 128:5201–5212.
  • Dilworth, F. J., K. J. Seaver, A. L. Fishburn, S. L. Htet, and S. J. Tapscott. 2004. In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc. Natl. Acad. Sci. USA 101:11593–11598.
  • Dyer, M. A., and C. L. Cepko. 2000. p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127:3593–3605.
  • Eckner, R., T. P. Yao, E. Oldread, and D. M. Livingston. 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:2478–2490.
  • Engel, I., and C. Murre. 2004. E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J. 23:202–211.
  • Engel, I., and C. Murre. 2001. The function of E- and Id proteins in lymphocyte development. Nat. Rev. Immunol. 1:193–199.
  • Feinberg, A. P. 2000. The two-domain hypothesis in Beckwith-Wiedemann syndrome. J. Clin. Investig. 106:739–740.
  • Funato, N., K. Ohtani, K. Ohyama, T. Kuroda, and M. Nakamura. 2001. Common regulation of growth arrest and differentiation of osteoblasts by helix-loop-helix factors. Mol. Cell. Biol. 21:7416–7428.
  • Hao, Y., T. Crenshaw, T. Moulton, E. Newcomb, and B. Tycko. 1993. Tumour-suppressor activity of H19 RNA. Nature 365:764–767.
  • Iavarone, A., P. Garg, A. Lasorella, J. Hsu, and M. A. Israel. 1994. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev. 8:1270–1284.
  • Iavarone, A., and A. Lasorella. 2004. Id proteins in neural cancer. Cancer Lett. 204:189–196.
  • John, R. M., J. F. Ainscough, S. C. Barton, and M. A. Surani. 2001. Distant cis-elements regulate imprinted expression of the mouse p57(Kip2) (Cdkn1c) gene: implications for the human disorder, Beckwith-Wiedemann syndrome. Hum. Mol. Genet. 10:1601–1609.
  • Joseph, B., A. Wallen-Mackenzie, G. Benoit, T. Murata, E. Joodmardi, S. Okret, and T. Perlmann. 2003. p57(Kip2) cooperates with Nurr1 in developing dopamine cells. Proc. Natl. Acad. Sci. USA 100:15619–15624.
  • Kee, B. L., and C. Murre. 2001. Transcription factor regulation of B lineage commitment. Curr. Opin. Immunol. 13:180–185.
  • Kee, B. L., M. W. Quong, and C. Murre. 2000. E2A proteins: essential regulators at multiple stages of B-cell development. Immunol. Rev. 175:138–149.
  • Kikuchi, T., M. Toyota, F. Itoh, H. Suzuki, T. Obata, H. Yamamoto, H. Kakiuchi, M. Kusano, J. P. Issa, T. Tokino, and K. Imai. 2002. Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors. Oncogene 21:2741–2749.
  • Kudo, M., Y. Kitao, S. Okoyama, M. Moriya, and J. Kawano. 1996. Crossed projection neurons are generated prior to uncrossed projection neurons in the lateral superior olive of the rat. Brain Res. Dev. Brain Res. 95:72–78.
  • Lasorella, A., R. Boldrini, C. Dominici, A. Donfrancesco, Y. Yokota, A. Inserra, and A. Iavarone. 2002. Id2 is critical for cellular proliferation and is the oncogenic effector of N-myc in human neuroblastoma. Cancer Res. 62:301–306.
  • Lasorella, A., A. Iavarone, and M. A. Israel. 1996. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol. Cell. Biol. 16:2570–2578.
  • Lasorella, A., G. Rothschild, Y. Yokota, R. G. Russell, and A. Iavarone. 2005. Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol. Cell. Biol. 25:3563–3574.
  • Lee, J. E., S. M. Hollenberg, L. Snider, D. L. Turner, N. Lipnick, and H. Weintraub. 1995. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–844.
  • Lee, M. H., I. Reynisdottir, and J. Massague. 1995. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9:639–649.
  • Littlewood, T. D., D. C. Hancock, P. S. Danielian, M. G. Parker, and G. I. Evan. 1995. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23:1686–1690.
  • Maher, E. R., and W. Reik. 2000. Beckwith-Wiedemann syndrome: imprinting in clusters revisited. J. Clin. Investig. 105:247–252.
  • Massari, M. E., and C. Murre. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20:429–440.
  • Murre, C. 1999. Role of helix-loop-helix proteins in lymphocyte development. Cold Spring Harb. Symp. Quant. Biol. 64:39–44.
  • Murre, C., P. S. McCaw, and D. Baltimore. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, and A. B. Lassar. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Nagahama, H., S. Hatakeyama, K. Nakayama, M. Nagata, K. Tomita, and K. Nakayama. 2001. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat. Embryol. (Berlin) 203:77–87.
  • Naya, F. J., C. M. Stellrecht, and M. J. Tsai. 1995. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9:1009–1019.
  • Pagliuca, A., P. Gallo, P. De Luca, and L. Lania. 2000. Class A helix-loop-helix proteins are positive regulators of several cyclin-dependent kinase inhibitors' promoter activity and negatively affect cell growth. Cancer Res. 60:1376–1382.
  • Paulsen, M., K. R. Davies, L. M. Bowden, A. J. Villar, O. Franck, M. Fuermann, W. L. Dean, T. F. Moore, N. Rodrigues, K. E. Davies, R. J. Hu, A. P. Feinberg, E. R. Maher, W. Reik, and J. Walter. 1998. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith-Wiedemann syndrome region in chromosome 11p15.5. Hum. Mol. Genet. 7:1149–1159.
  • Peverali, F. A., T. Ramqvist, R. Saffrich, R. Pepperkok, M. V. Barone, and L. Philipson. 1994. Regulation of G1 progression by E2A and Id helix-loop-helix proteins. EMBO J. 13:4291–4301.
  • Prabhu, S., A. Ignatova, S. T. Park, and X. H. Sun. 1997. Regulation of the expression of cyclin-dependent kinase inhibitor p21 by E2A and Id proteins. Mol. Cell. Biol. 17:5888–5896.
  • Qiu, Y., A. Sharma, and R. Stein. 1998. p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol. Cell. Biol. 18:2957–2964.
  • Reik, W., W. Dean, and J. Walter. 2001. Epigenetic reprogramming in mammalian development. Science 293:1089–1093.
  • Rivera, R. R., C. P. Johns, J. Quan, R. S. Johnson, and C. Murre. 2000. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity12:17–26.
  • Ross, S. E., M. E. Greenberg, and C. D. Stiles. 2003. Basic helix-loop-helix factors in cortical development. Neuron 39:13–25.
  • Rutherford, M. N., and D. P. LeBrun. 1998. Restricted expression of E2A protein in primary human tissues correlates with proliferation and differentiation. Am. J. Pathol. 153:165–173.
  • Samuelsson, M. K., A. Pazirandeh, B. Davani, and S. Okret. 1999. p57Kip2, a glucocorticoid-induced inhibitor of cell cycle progression in HeLa cells. Mol. Endocrinol. 13:1811–1822.
  • Sayegh, C. E., M. W. Quong, Y. Agata, and C. Murre. 2003. E-proteins directly regulate expression of activation-induced deaminase in mature B cells. Nat. Immunol. 4:586–593.
  • Sherr, C. J., and J. M. Roberts. 1999. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13:1501–1512.
  • Sidell, N., A. Altman, M. R. Haussler, and R. C. Seeger. 1983. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell Res. 148:21–30.
  • Song, S., J. Cooperman, D. L. Letting, G. A. Blobel, and J. K. Choi. 2004. Identification of cyclin D3 as a direct target of E2A using DamID. Mol. Cell. Biol. 24:8790–8802.
  • Tilghman, S. M. 1999. The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96:185–193.
  • Tsugu, A., K. Sakai, P. B. Dirks, S. Jung, R. Weksberg, Y. L. Fei, S. Mondal, S. Ivanchuk, C. Ackerley, P. A. Hamel, and J. T. Rutka. 2000. Expression of p57(KIP2) potently blocks the growth of human astrocytomas and induces cell senescence. Am. J. Pathol. 157:919–932.
  • Tycko, B., and A. Efstratiadis. 2002. Genomic imprinting: piece of cake. Nature 417:913–914.
  • Tzeng, S. F. 2003. Inhibitors of DNA binding in neural cell proliferation and differentiation. Neurochem. Res. 28:45–52.
  • van Lookeren Campagne, M., and R. Gill. 1998. Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. J. Comp. Neurol. 397:181–198.
  • Weintraub, H., V. J. Dwarki, I. Verma, R. Davis, S. Hollenberg, L. Snider, A. Lassar, and S. J. Tapscott. 1991. Muscle-specific transcriptional activation by MyoD. Genes Dev. 5:1377–1386.
  • Yan, Y., J. Frisen, M. H. Lee, J. Massague, and M. Barbacid. 1997. Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev. 11:973–983.
  • Yu, J., H. Zhang, J. Gu, S. Lin, J. Li, W. Lu, Y. Wang, and J. Zhu. 2004. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer 4:65.
  • Zhang, P., N. J. Liegeois, C. Wong, M. Finegold, H. Hou, J. C. Thompson, A. Silverman, J. W. Harper, R. A. DePinho, and S. J. Elledge. 1997. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith-Wiedemann syndrome. Nature 387:151–158.
  • Zhang, P., C. Wong, R. A. DePinho, J. W. Harper, and S. J. Elledge. 1998. Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development. Genes Dev. 12:3162–3167.
  • Zhang, P., C. Wong, D. Liu, M. Finegold, J. W. Harper, and S. J. Elledge. 1999. p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev. 13:213–224.
  • Zhao, F., A. Vilardi, R. J. Neely, and J. K. Choi. 2001. Promotion of cell cycle progression by basic helix-loop-helix E2A. Mol. Cell. Biol. 21:6346–6357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.