145
Views
193
CrossRef citations to date
0
Altmetric
Article

Hog1 Mitogen-Activated Protein Kinase Phosphorylation Targets the Yeast Fps1 Aquaglyceroporin for Endocytosis, Thereby Rendering Cells Resistant to Acetic Acid

&
Pages 6446-6456 | Received 24 Nov 2006, Accepted 25 Jun 2007, Published online: 27 Mar 2023

REFERENCES

  • Adams, A., D. E. Gottschling, C. A. Kaiser, and T. Stearns. 1997. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Agre, P., and D. Kozono. 2003. Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett. 555:72–78.
  • Amerik, A. Y., J. Nowak, S. Swaminathan, and M. Hochstrasser. 2000. The Doa4 deubiquitinating enzyme is functionally linked to the vacuolar protein-sorting and endocytic pathways. Mol. Biol. Cell 11:3365–3380.
  • Dupre, S., D. Urban-Grimal, and R. Haguenauer-Tsapis. 2004. Ubiquitin and endocytic internalization in yeast and animal cells. Biochim. Biophys. Acta 1695:89–111.
  • Fu, D., A. Libson, L. J. Miercke, C. Weitzman, P. Nollert, J. Krucinski, and R. M. Stroud. 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481–486.
  • Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. O'Shea, and J. S. Weissman. 2003. Global analysis of protein expression in yeast. Nature 425:737–741.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenised yeast genes lacking six-base-pair restriction sites. Gene 74:527–534.
  • Goldstein, A. L., and J. H. McCusker. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.
  • Hedfalk, K., R. M. Bill, J. G. Mullins, S. Karlgren, C. Filipsson, J. Bergstrom, M. J. Tamas, J. Rydstrom, and S. Hohmann. 2004. A regulatory domain in the C-terminal extension of the yeast glycerol channel Fps1p. J. Biol. Chem. 279:14954–14960.
  • Henriques, M., C. Quintas, and M. C. Loureiro-Dias. 1997. Extrusion of benzoic acid in Saccharomyces cerevisiae by an energy-dependent mechanism. Microbiology 143:1877–1883.
  • Hohmann, I., R. M. Bill, I. Kayingo, and B. A. Prior. 2000. Microbial MIP channels. Trends Microbiol. 8:33–38.
  • Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol Rev. 66:300–372.
  • Karlgren, S., N. Pettersson, B. Nordlander, J. C. Mathai, J. L. Brodsky, M. L. Zeidel, R. M. Bill, and S. Hohmann. 2005. Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling. J. Biol. Chem. 280:7186–7193.
  • King, L. S., D. Kozono, and P. Agre. 2004. From structure to disease: the evolving tale of aquaporin biology. Nat. Rev. Mol. Cell. Biol. 5:687–698.
  • Krebs, H. A., D. Wiggins, M. Stubbs, A. Sols, and F. Bedoya. 1983. Studies on the mechanism of the antifungal action of benzoate. Biochem. J. 214:657–663.
  • Luyten, K., J. Albertyn, W. F. Skibbe, B. A. Prior, J. Ramos, J. M. Thevelein, and S. Hohmann. 1995. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14:1360–1371.
  • Millson, S. H., A. Truman, V. King, C. Prodromou, L. Pearl, and P. W. Piper. 2005. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in activity of a stress-activated MAP kinase, Slt2p(Mpk1p). Eukaryot. Cell. 4:849–860.
  • Millson, S. M., A. Truman, and P. W. Piper. 2003. Vectors for N- or C-terminal positioning of the yeast Gal4p DNA binding or activator domains. BioTechniques 35:60–64.
  • Mollapour, M., and P. W. Piper. 2006. Hog1p MAP kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res. 6:1274–1280.
  • Niedenthal, R. K., L. Riles, M. Johnston, and J. H. Hegemann. 1996. Green fluorescent protein as a marker for gene expression and subcellular localisation in budding yeast. Yeast 12:773–786.
  • O'Rourke, S. M., and I. Herskowitz. 2004. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell. 15:532–542.
  • Pettersson, N., C. Filipsson, E. Becit, L. Brive, and S. Hohmann. 2005. Aquaporins in yeasts and filamentous fungi. Biol. Cell 97:487–500.
  • Piper, P., Y. MahŽ, S. Thompson, R. Pandjaitan, C. Holyoak, R. Egner, M. MŸhlbauer, P. Coote, and K. Kuchler. 1998. The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J. 17:4257–4265.
  • Posas, F., and H. Saito. 1997. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276:1702–1705.
  • Proft, M., G. Mas, E. de Nadal, A. Vendrell, N. Noriega, K. Struhl, and F. Posas. 2006. The stress-activated Hog1 kinase is a selective transcriptional elongation factor for genes responding to osmotic stress. Mol. Cell. 23:241–250.
  • Proft, M., and K. Struhl. 2004. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Cell 118:351–361.
  • Swaminathan, S., A. Y. Amerik, and M. Hochstrasser. 1999. The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol. Biol. Cell. 10:2583–2594.
  • Tamas, M. J., S. Karlgren, R. M. Bill, K. Hedfalk, L. Allegri, M. Ferreira, J. M. Thevelein, J. Rydstrom, J. G. Mullins, and S. Hohmann. 2003. A short regulatory domain restricts glycerol transport through yeast Fps1p. J. Biol. Chem. 278:6337–6345.
  • Tamas, M. J., K. Luyten, F. C. Sutherland, A. Hernandez, J. Albertyn, H. Valadi, H. Li, B. A. Prior, S. G. Kilian, J. Ramos, L. Gustafsson, J. M. Thevelein, and S. Hohmann. 1999. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31:1087–1104.
  • Tamas, M. J., M. Rep, J. M. Thevelein, and S. Hohmann. 2000. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 472:159–165.
  • Tang, H. Y., A. Munn, and M. Cai. 1997. EH domain proteins Pan1p and End3p are components of a complex that plays a dual role in organization of the cortical actin cytoskeleton and endocytosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:4294–4304.
  • Tanoue, T., and E. Nishida. 2003. Molecular recognitions in the MAP kinase cascades. Cell Signal. 15:455–462.
  • Thorsen, M., Y. Di, C. Tangemo, M. Morillas, D. Ahmadpour, C. Van der Does, A. Wagner, E. Johansson, J. Boman, F. Posas, R. Wysocki, and M. J. Tamas. 2006. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol. Biol. Cell 17:4400–4410.
  • Uetz, P., G. Cagney, D. Lockshon, A. Qureshi-Emili, D. Conover, M. Johnston, and S. Fields. 2000. A protein array for genomewide screens of protein-protein interactions. Nature 403:623–627.
  • Urbe, S. 2005. Ubiquitin and endocytic protein sorting. Essays Biochem. 41:81–98.
  • Wysocki, R., C. C. Chery, D. Wawrzycka, M. Van Hulle, R. Cornelis, J. M. Thevelein, and M. J. Tamas. 2001. The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 40:1391–1401.
  • Zeuthen, T., B. Wu, S. Pavlovic-Djuranovic, L. M. Holm, N. L. Uzcategui, M. Duszenko, J. F. Kun, J. E. Schultz, and E. Beitz. 2006. Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol. Microbiol. 61:1598–1608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.