25
Views
89
CrossRef citations to date
0
Altmetric
Article

Spatial Localization of m-Calpain to the Plasma Membrane by Phosphoinositide Biphosphate Binding during Epidermal Growth Factor Receptor-Mediated Activation

, , , , , & show all
Pages 5481-5496 | Received 21 Nov 2005, Accepted 26 Apr 2006, Published online: 27 Mar 2023

REFERENCES

  • Arthur, J. S., and C. Crawford. 1996. Investigation of the interaction of m-calpain with phospholipids: calpain-phospholipid interactions. Biochim. Biophys. Acta 1293:201–206.
  • Beckerle, M. C., K. Burridge, G. N. DeMartino, and D. E. Croall. 1987. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell 51:569–577.
  • Bialkowska, K., S. Kulkarni, X. Du, D. E. Goll, T. C. Saido, and J. E. Fox. 2000. Evidence that beta3 integrin-induced Rac activation involves the calpain-dependent formation of integrin clusters that are distinct from the focal complexes and focal adhesions that form as Rac and RhoA become active. J. Cell Biol. 151:685–695.
  • Bootman, M. D., P. Lipp, and M. J. Berridge. 2001. The organisation and functions of local Ca2+ signals. J. Cell Sci. 114:2213–2222.
  • Bornfeldt, K. E., E. W. Raines, T. Nakano, L. M. Graves, E. G. Krebs, and R. Ross. 1994. Insulin-like growth factor-1 and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signalling pathways that are distinct from those of proliferation. J. Clin. Investig. 93:1266–1274.
  • Carpenter, G. 1999. Employment of the epidermal growth factor receptor in growth factor-independent signaling pathways. J. Cell Biol. 145:697–702.
  • Carragher, N. O., M. A. Westhoff, V. J. Fincham, M. D. Schaller, and M. C. Frame. 2003. A novel role for FAK as a protease-targeting adaptor protein: regulation by p42 ERK and Src. Curr. Biol. 13:1442–1450.
  • Carragher, N. O., and M. C. Frame. 2004. Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion. Trends Cell Biol. 14:241–249.
  • Chakrabarti, A. K., S. Dasgupta, N. Banik, and E. L. Hogan. 1990. Regulation of the calcium-activated neutral proteinase (CANP) of bovine brain by myelin lipids. Biochim. Biophys. Acta 1038:195–198.
  • Chaney, L. K., and B. S. Jacobson. 1983. Coating cells with colloidal silica for high yield isolation of plasma membrane sheets and identification of transmembrane proteins. J. Biol. Chem. 258:10062–10072.
  • Chen, P., J. Murphy-Ullrich, and A. Wells. 1996. A role for gelsolin in actuating EGF receptor-mediated cell motility. J. Cell Biol. 134:689–698.
  • Chen, P., H. Xie, M. C. Sekar, K. B. Gupta, and A. Wells. 1994. Epidermal growth factor receptor-mediated cell motility: phospholipase C activity is required, but MAP kinase activity is not sufficient for induced cell movement. J. Cell Biol. 127:847–857.
  • Chou, J., D. B. Stolz, N. Burke, S. C. Watkins, and A. Wells. 2002. Distribution of gelsolin and phosphoinositol 4,5-bisphosphate in lamellipodia during EGF-induced motility. Int. J. Biochem. Cell Biol. 34:776–790.
  • Chou, J., N. A. Burke, A. Iwabu, S. C. Watkins, and A. Wells. 2003. Directional motility induced by EGF requires cdc42. Exp. Cell Res. 287:47–56.
  • Cooray, P., Y. Yuan, S. M. Schoenwaelder, C. A. Mitchell, H. H. Salem, and S. P. Jackson. 1996. Focal adhesion kinase (pp125FAK) cleavage and regulation by calpain. Biochem. J. 318:41–47.
  • Croall, D. E., and G. N. DeMartino. 1991. Calcium activated neutral protease (calpain) system: structure, function, and regulation. Physiol. Rev. 71:813–847.
  • Dayton, W. R. 1982. Comparison of low- and high-calcium-requiring forms of the calcium-activated protease with their autocatalytic breakdown products. Biochim. Biophys. Acta 709:166–172.
  • Dormann, D., G. Weijer, C. A. Parent, P. N. Devreotes, and C. J. Weijer. 2002. Visualizing PI3 kinase-mediated cell-cell signaling during Dictyostelium development. Curr. Biol. 12:1178–1188.
  • Franco, S., B. Perrin, and A. Huttenlocher. 2004. Isoform specific function of calpain 2 in regulating membrane protrusion. Exp. Cell Res. 299:179–187.
  • Franco, S. J., M. A. Rodgers, B. J. Perrin, J. Han, D. A. Bennin, D. R. Critchley, and A. Huttenlocher. 2004. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nat. Cell Biol. 6:977–983.
  • Glading, A., R. J. Bodnar, I. J. Reynolds, H. Shiraha, L. Satish, D. A. Potter, H. C. Blair, and A. Wells. 2004. Epidermal growth factor activates m-calpain (calpain 2), at least in part, by ERK-mediated phosphorylation. Mol. Cell. Biol. 24:2499–2512.
  • Glading, A., P. Chang, D. A. Lauffenburger, and A. Wells. 2000. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J. Biol. Chem. 275:2390–2398.
  • Glading, A., D. A. Lauffenburger, and A. Wells. 2002. Cutting to the chase: calpain proteases in cell migration. Trends Cell Biol. 12:46–54.
  • Glading, A., F. Uberall, S. M. Keyse, D. A. Lauffenburger, and A. Wells. 2001. Membrane proximal ERK signaling is required for M-calpain activation downstream of EGF receptor signaling. J. Biol. Chem. 276:23341–23348.
  • Golub, T., and P. Caroni. 2005. PI(4,5)P2-dependent microdomain assemblies capture microtubules to promote and control leading edge motility. J. Cell Biol. 169:151–165.
  • Huttenlocher, A., M. H. Ginsberg, and A. F. Horwitz. 1996. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J. Cell Biol. 134:1551–1562.
  • Huttenlocher, A., S. P. Palecek, Q. Lu, W. Zhang, R. L. Mellgren, D. A. Lauffenburger, M. H. Ginsburg, and A. F. Horwitz. 1997. Regulation of cell migration by the calcium-dependent protease calpain. J. Biol. Chem. 272:32719–32722.
  • Iijima, M., Y. E. Huang, and P. Devreotes. 2002. Temporal and spatial regulation of chemotaxis. Dev. Cell 3:469–478.
  • Iijima, M., Y. E. Huang, H. R. Luo, F. Vazquez, and P. N. Devreotes. 2004. Novel mechanism of PTEN regulation by its phosphophatidylinositol (4,5)-binding motif is critical for chemotaxis. J. Biol. Chem. 279:16606–16613.
  • Kanzaki, M., M. Nagasawa, I. Kojima, C. Sato, K. Naruse, M. Sokabe, and H. Iida. 1999. Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–886.
  • Kassis, J., J. Moellinger, H. Lo, N. Greenberg, H.-G. Kim, and A. Wells. 1999. A role for phospholipase C-γ-mediated signaling in tumor cell invasion. Clin. Cancer Res. 5:2251–2260.
  • Kassis, J., R. Radinsky, and A. Wells. 2002. Motility is rate-limiting for invasion of bladder carcinoma cell lines. Int. J. Biochem. Cell Biol. 34:262–275.
  • Kundra, V., J. A. Escobedo, A. Kazlauskas, H. K. Kim, S. G. Rhee, L. T. Williams, and B. R. Zetter. 1994. Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature 367:474–476.
  • Lane, R. D., D. M. Allan, and R. L. Mellgren. 1992. A comparison of the intracellular distribution of μ-calpain, m-calpain, and calpastatin in proliferating human A431 cells. Exp. Cell Res. 203:5–16.
  • Lauffenburger, D. A., and A. F. Horwitz. 1996. Cell migration: a physically integrated molecular process. Cell 84:359–369.
  • Lee, J., A. Ishihara, G. Oxford, B. Johnson, and K. Jacobson. 1999. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400:382–386.
  • Ma, L., C. Janetopoulos, L. Yang, P. N. Devreotes, and P. A. Iglesias. 2004. Two complementary, local excitation, global inhibiton mechanisms acting in parallel can explain the chemoattractant-induced regulation of PI(3,4,5)P3 response in dictyostelium cells. Biophys. J. 87:3764–3774.
  • McGuire, R. F., D. M. Bissell, J. Boyles, and F. J. Roll. 1992. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology 15:989–997.
  • Melloni, E., M. Michetti, F. Salamino, R. Minafra, and S. Pontremoli. 1996. Modulation of the calpain autoproteolysis by calpastatin and phospholipids. Biochem. Biophys. Res. Commun. 229:193–197.
  • Michetti, M., F. Salamino, I. Tedesco, M. Averna, R. Minafra, E. Melloni, and S. Pontremoli. 1996. Autolysis of human erythrocyte calpain produces two active forms with different cell localization. FEBS Lett. 392:11–15.
  • Moldoveanu, T., C. M. Hosfield, D. Lim, L. S. Elce, Z. Jia, and P. L. Davies. 2002. A Ca2+ switch aligns the active site of calpain. Cell 108:649–660.
  • Molinari, M., J. Anagli, and E. Carafoli. 1994. Ca2+-activated neutral protease is active in erythrocyte membrane in its nonautolyzed 80kDa form. J. Biol. Chem. 269:27992–27995.
  • Mouneimne, G., S. Soon, V. DesMarais, N. Sidani, X. Song, S.-C. Yip, M. Ghosh, R. Eddy, J. M. Backer, and J. Condeelis. 2004. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166:697–708.
  • Orr, A. W., M. A. Pallero, and J. E. Murphy-Ullrich. 2002. Thrombospondin stimulates focal adhesion disassembly through G(i)- and phosphoinositide 3-kinase-dependent ERK activation. J. Biol. Chem. 277:20453–20460.
  • Palecek, S., A. Huttenlocher, A. F. Horwitz, and D. A. Lauffenburger. 1998. Physical and biochemical regulation of integrin release during rear detachment of migrating cells. J. Cell Sci. 111:929–940.
  • Pontremoli, S., B. Sparatore, F. Salamino, M. Michetti, O. Sacco, and E. Melloni. 1985. Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes. Biochem. Int. 11:35–44.
  • Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. 2003. Cell migration: integrating signals from front to back. Science 302:1704–1709.
  • Rizo, J., and T. C. Sudhof. 1998. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273:15879–15882.
  • Rosser, B. G., S. P. Powers, and G. J. Gores. 1993. Calpain activity increases in hepatocytes following addition of ATP. Demonstration by a novel fluorescent approach. J. Biol. Chem. 268:23593–23600.
  • Saido, T. C., K. Mizuno, and K. Suzuki. 1991. Proteolysis of protein kinase C by calpain: effect of acidic phospholipids. Biomed. Biochim. Acta 50:485–489.
  • Saido, T. C., M. Shibata, T. Takenawa, H. Murofushi, and K. Suzuki. 1992. Positive regulation of mu-calpain action by polyphosphoinositides. J. Biol. Chem. 267:24585–24590.
  • Saido, T. C., M. Yokota, S. Nagao, I. Yamaura, E. Tani, T. Tsuchiya, L. Suzuki, and S. Kawashima. 1993. Spatial resolution of fodrin proteolysis in postischemic brain. J. Biol. Chem. 268:25239–25243.
  • Satish, L., H. C. Blair, A. Glading, and A. Wells. 2005. IP-9 (CXCL11) induced cell motility in keratinocytes requires calcium flux-dependent activation of μ-calpain. Mol. Cell. Biol. 25:1922–1941.
  • Seveau, S., R. J. Eddy, F. R. Maxfield, and L. M. Pierini. 2001. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol. Biol. Cell 12:3550–3562.
  • Shcherbina, A., A. Bretscher, D. M. Kenney, and E. Remold-O'Donnell. 1999. Moesin, the major ERM protein of lymphocytes and platelets, differs from ezrin in its insensitivity to calpain. FEBS Lett. 443:31–36.
  • Shiraha, H., A. Glading, J. Chou, Z. Jia, and A. Wells. 2002. Activation of m-calpain (calpain II) by epidermal growth factor is limited by PKA phosphorylation of m-calpain. Mol. Cell. Biol. 22:2716–2727.
  • Shiraha, H., K. Gupta, A. Glading, and A. Wells. 1999. IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity. J. Cell Biol. 146:243–253.
  • Siddhanta, A., J. M. Backer, and D. Shields. 2000. Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J. Biol. Chem. 275:12023–12031.
  • Stolz, D. B., and B. S. Jacobson. 1992. Examination of transcellular membrane protein polarity of bovine aortic endothelial cells in vitro using the cationic colloidal silica microbead membrane-isolation procedure. J. Cell Sci. 103:39–51.
  • Stossel, T. P. 1993. On the crawling of animal cells. Science 260:1086–1094.
  • Tompa, P., Y. Emori, H. Sorimachi, K. Suzuki, and P. Friedrich. 2001. Domain III of calpain is a Ca+2-regulated phospholipid-binding domain. Biochem. Biophys. Res. Commun. 280:1333–1339.
  • Wells, A., K. Gupta, P. Chang, S. Swindle, A. Glading, and H. Shiraha. 1998. Epidermal growth factor receptor-mediated motility in fibroblasts. Microsc. Res. Tech. 43:395–411.
  • Wells, A., J. B. Welsh, C. S. Lazar, H. S. Wiley, G. N. Gill, and M. G. Rosenfeld. 1990. Ligand-induced transformation by a non-internalizing EGF receptor. Science 247:962–964.
  • Xie, H., M. A. Pallero, D. Gupta, P. Chang, M. F. Ware, W. Witke, D. J. Kwiatkowski, D. A. Lauffenburger, J. E. Murphy-Ullrich, and A. Wells. 1998. EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility-associated PLC-γ signaling pathway. J. Cell Sci. 111:615–624.
  • Yoshimura, N., T. Kikuchi, T. Sasaki, A. Kitahara, M. Hatanaka, and T. Murachi. 1983. Two distinct Ca2+ proteases (calpain I and calpain II) purified concurrently by the same method from rat kidney. J. Biol. Chem. 258:8883–8889.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.