50
Views
111
CrossRef citations to date
0
Altmetric
Article

Wnt-5a/Ca2+-Induced NFAT Activity Is Counteracted by Wnt-5a/Yes-Cdc42-Casein Kinase 1α Signaling in Human Mammary Epithelial Cells

, , , &
Pages 6024-6036 | Received 09 Dec 2005, Accepted 17 May 2006, Published online: 27 Mar 2023

REFERENCES

  • Adam, L., R. Vadlamudi, M. Mandal, J. Chernoff, and R. Kumar. 2000. Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J. Biol. Chem. 275:12041–12050.
  • Aramburu, J., M. B. Yaffe, C. Lopez-Rodriguez, L. C. Cantley, P. G. Hogan, and A. Rao. 1999. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285:2129–2133.
  • Beals, C. R., C. M. Sheridan, C. W. Turck, P. Gardner, and G. R. Crabtree. 1997. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275:1930–1934.
  • Chow, C. W., M. Rincon, J. Cavanagh, M. Dickens, and R. J. Davis. 1997. Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278:1638–1641.
  • Crabtree, G. R., and E. N. Olson. 2002. NFAT signaling: choreographing the social lives of cells. Cell 109(Suppl.):S67–S79.
  • Davis, R. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103:239–252.
  • Dejmek, J., A. Dejmek, A. Safholm, A. Sjolander, and T. Andersson. 2005. Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res. 65:9142–9146.
  • Dejmek, J., K. Dib, M. Jonsson, and T. Andersson. 2003. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int. J. Cancer 103:344–351.
  • Dejmek, J., K. Leandersson, J. Manjer, A. Bjartell, S. O. Emdin, W. F. Vogel, G. Landberg, and T. Andersson. 2005. Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin. Cancer Res. 11:520–528.
  • Edlund, S., M. Landstrom, C. Heldin, and P. Aspenstrom. 2002. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell 13:902–914.
  • Etienne-Manneville, S., and A. Hall. 2003. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421:753–756.
  • Fukuhara, T., K. Shimizu, T. Kawakatsu, T. Fukuyama, Y. Minami, T. Honda, T. Hoshino, T. Yamada, H. Ogita, M. Okada, and Y. Takai. 2004. Activation of Cdc42 by trans interactions of the cell adhesion molecules nectins through c-Src and Cdc42-GEF FRG. J. Cell Biol. 166:393–405.
  • Giles, R. H., J. H. van Es, and H. Clevers. 2003. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim. Biophys. Acta 1653:1–24.
  • Gomez del Arco, P., S. Martinez-Martinez, J. L. Maldonado, I. Ortega-Perez, and J. M. Redondo. 2000. A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J. Biol. Chem. 275:13872–13878.
  • Gomez, M., L. Bosc, A. Stevenson, M. Wilkerson, D. Hill-Eubanks, and M. Nelson. 2003. Constitutively elevated nuclear export activity opposes Ca2+-dependent NFATc3 nuclear accumulation in vascular smooth muscle: role of JNK2 and Crm-1. J. Biol. Chem. 278:46847–46853.
  • Ha, N. C., T. Tonozuka, J. L. Stamos, H. J. Choi, and W. I. Weis. 2004. Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol. Cell 15:511–521.
  • Habas, R., I. B. Dawid, and X. He. 2003. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17:295–309.
  • Hagen, T., and A. Vidal-Puig. 2002. Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochem. Biophys. Res. Commun. 294:324–328.
  • Hammerlein, A., J. Weiske, and O. Huber. 2005. A second protein kinase CK1-mediated step negatively regulates Wnt signalling by disrupting the lymphocyte enhancer factor-1/β-catenin complex. Cell Mol. Life Sci. 62:606–618.
  • Hatsell, S., T. Rowlands, M. Hiremath, and P. Cowin. 2003. Beta-catenin and Tcfs in mammary development and cancer. J. Mammary Gland Biol. Neoplasia 8:145–158.
  • He, X., J. Saint-Jeannet, Y. Wang, J. Nathans, I. Dawid, and H. Varmus. 1997. A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science 275:1652–1654.
  • Hoey, T., Y. L. Sun, K. Williamson, and X. Xu. 1995. Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity 2:461–472.
  • Jauliac, S., C. Lopez-Rodriguez, L. Shaw, L. Brown, A. Rao, and A. Toker. 2002. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat. Cell Biol. 4:540–544.
  • Jonsson, M., and T. Andersson. 2001. Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J. Cell Sci. 114:2043–2053.
  • Jonsson, M., J. Dejmek, P. Bendahl, and T. Andersson. 2002. Loss of Wnt-5a protein is associated with early relapse in invasive ductal breast carcinomas. Cancer Res. 62:409–416.
  • Klinghoffer, R. A., C. Sachsenmaier, J. A. Cooper, and P. Soriano. 1999. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18:2459–2471.
  • Knippschild, U., A. Gocht, S. Wolff, N. Huber, J. Lohler, and M. Stoter. 2005. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17:675–689.
  • Kohn, A. D., and R. T. Moon. 2005. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 38:439–446.
  • Kremenevskaja, N., R. von Wasielewski, A. S. Rao, C. Schofl, T. Andersson, and G. Brabant. 2005. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene 24:2144–2154.
  • Kuhl, M., K. Geis, L. C. Sheldahl, T. Pukrop, R. T. Moon, and D. Wedlich. 2001. Antagonistic regulation of convergent extension movements in Xenopus by Wnt/β-catenin and Wnt/Ca2+ signaling. Mech. Dev. 106:61–76.
  • Kuhl, M., L. Sheldahl, M. Park, J. Miller, and R. Moon. 2000. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16:279–283.
  • Kuhl, M., L. C. Sheldahl, C. C. Malbon, and R. T. Moon. 2000. Ca2+/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275:12701–12711.
  • Li, L., H. Yuan, W. Xie, J. Mao, A. M. Caruso, A. McMahon, D. J. Sussman, and D. Wu. 1999. Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J. Biol. Chem. 274:129–134.
  • Liang, Q., O. Bueno, B. Wilkins, C. Kuan, Y. Xia, and J. Molkentin. 2003. c-Jun N-terminal kinases (JNK) antagonize cardiac growth through cross-talk with calcineurin-NFAT signaling. EMBO J. 22:5079–5089.
  • Lozano, E., M. Betson, and V. M. Braga. 2003. Tumor progression: small GTPases and loss of cell-cell adhesion. Bioessays 2 5:452–463.
  • Lustig, B., and J. Behrens. 2003. The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol. 129:199–221.
  • Mao, J., J. Wang, B. Liu, W. Pan, G. r. Farr, C. Flynn, H. Yuan, S. Takada, D. Kimelman, L. Li, and D. Wu. 2001. Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Mol. Cell 7:801–809.
  • Mikels, A. J., and R. Nusse. 2006. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4:e115.
  • Miller, J. 2002. The Wnts. Genome Biol. 3:3001.13001.15. [Online.]
  • Minden, A., A. Lin, F. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157.
  • Moriguchi, T., K. Kawachi, S. Kamakura, N. Masuyama, H. Yamanaka, K. Matsumoto, A. Kikuchi, and E. Nishida. 1999. Distinct domains of mouse dishevelled are responsible for the c-Jun N-terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J. Biol. Chem. 274:30957–30962.
  • Morreale, A., M. Venkatesan, H. R. Mott, D. Owen, D. Nietlispach, P. N. Lowe, and E. D. Laue. 2000. Structure of Cdc42 bound to the GTPase binding domain of PAK. Nat. Struct. Biol. 7:384–388.
  • Murphy, L., and C. Hughes. 2002. Endothelial cells stimulate T-cell NFAT nuclear translocation in the presence of cyclosporin A: involvement of the Wnt/glycogen synthase kinase-3 beta pathway. J. Immunol. 169:3717–3725.
  • Nelson, W. J., and R. Nusse. 2004. Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487.
  • Okamura, H., C. Garcia-Rodriguez, H. Martinson, J. Qin, D. M. Virshup, and A. Rao. 2004. A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol. Cell. Biol. 24:4184–4195.
  • Olson, D., and D. Gibo. 1998. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp. Cell Res. 241:134–141.
  • Pandur, P., D. Maurus, and M. Kuhl. 2002. Increasingly complex: new players enter the Wnt signaling network. Bioessays 24:881–884.
  • Patra, A. K., S. Y. Na, and U. Bommhardt. 2004. Active protein kinase B regulates TCR responsiveness by modulating cytoplasmic-nuclear localization of NFAT and NF-κB proteins. J. Immunol. 172:4812–4820.
  • Porter, C. M., M. A. Havens, and N. A. Clipstone. 2000. Identification of amino acid residues and protein kinases involved in the regulation of NFATc subcellular localization. J. Biol. Chem. 275:3543–3551.
  • Rao, A., C. Luo, and P. G. Hogan. 1997. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15:707–747.
  • Rivas, F. V., J. P. O'Keefe, M. L. Alegre, and T. F. Gajewski. 2004. Actin cytoskeleton regulates calcium dynamics and NFAT nuclear duration. Mol. Cell. Biol. 24:1628–1639.
  • Ruff, V. A., and K. L. Leach. 1995. Direct demonstration of NFATp dephosphorylation and nuclear localization in activated HT-2 cells using a specific NFATp polyclonal antibody. J. Biol. Chem. 270:22602–22607.
  • Saneyoshi, T., S. Kume, Y. Amasaki, and K. Mikoshiba. 2002. The Wnt/calcium pathway activates NF-AT and promotes ventral cell fate in Xenopus embryos. Nature 417:295–299.
  • Schweizer, L., and H. Varmus. 2 May 2003, posting date. Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biol. 4:4. [Online.] http://www.biomedcentral.com/1471-2121-4-4 .
  • Scott, J. E., V. A. Ruff, and K. L. Leach. 1997. Dynamic equilibrium between calcineurin and kinase activities regulates the phosphorylation state and localization of the nuclear factor of activated T cells. Biochem. J. 324(Pt. 2):597–603.
  • Seidensticker, M., and J. Behrens. 2000. Biochemical interactions in the wnt pathway. Biochim. Biophys. Acta 1495:168–182.
  • Sheldahl, L., D. Slusarski, P. Pandur, J. Miller, M. Kuhl, and R. Moon. 2003. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161:769–777.
  • Smalley, M., and T. Dale. 2001. Wnt signaling and mammary tumorigenesis. J. Mammary Gland Biol. Neoplasia 6:37–52.
  • Sobrado, P., A. Jedlicki, V. H. Bustos, C. C. Allende, and J. E. Allende. 2005. Basic region of residues 228-231 of protein kinase CK1α is involved in its interaction with axin: binding to axin does not affect the kinase activity. J. Cell Biochem. 94:217–224.
  • Takada, R., H. Hijikata, H. Kondoh, and S. Takada. 2005. Analysis of combinatorial effects of Wnts and Frizzleds on beta-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells 10:919–928.
  • Topol, L., X. Jiang, H. Choi, L. Garrett-Beal, P. Carolan, and Y. Yang. 2003. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J. Cell Biol. 162:899–908.
  • Tu, S., W. Wu, J. Wang, and R. Cerione. 2003. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 278:49293–49300.
  • Veeman, M., J. Axelrod, and R. Moon. 2003. A second canon: functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5:367–377.
  • Versteeg, H. H., I. Hoedemaeker, S. H. Diks, J. C. Stam, M. Spaargaren, P. M. van Bergen En Henegouwen, S. J. van Deventer, and M. P. Peppelenbosch. 2000. Factor VIIa/tissue factor-induced signaling via activation of Src-like kinases, phosphatidylinositol 3-kinase, and Rac. J. Biol. Chem. 275:28750–28756.
  • Weeraratna, A., Y. Jiang, G. Hostetter, K. Rosenblatt, P. Duray, M. Bittner, and J. Trent. 2002. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288.
  • Weidinger, G., and R. T. Moon. 2003. When Wnts antagonize Wnts. J. Cell Biol. 162:753–755.
  • Yablonski, D., L. P. Kane, D. Qian, and A. Weiss. 1998. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17:5647–5657.
  • Yamanaka, H., T. Moriguchi, N. Masuyama, M. Kusakabe, H. Hanafusa, R. Takada, S. Takada, and E. Nishida. 2002. JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 3:69–75.
  • Yoeli-Lerner, M., G. K. Yiu, I. Rabinovitz, P. Erhardt, S. Jauliac, and A. Toker. 2005. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell 20:539–550.
  • Zhu, J., F. Shibasaki, R. Price, J. C. Guillemot, T. Yano, V. Dotsch, G. Wagner, P. Ferrara, and F. McKeon. 1998. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93:851–861.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.