45
Views
39
CrossRef citations to date
0
Altmetric
Article

Topoisomerase 1 and Single-Strand Break Repair Modulate Transcription-Induced CAG Repeat Contraction in Human Cells

, , &
Pages 3105-3112 | Received 02 Feb 2011, Accepted 18 May 2011, Published online: 20 Mar 2023

REFERENCES

  • Boege, F., et al. 1996. Selected novel flavones inhibit the DNA binding or the DNA religation step of eukaryotic topoisomerase I. J. Biol. Chem. 271:2262–2270.
  • Caldecott, K. W.. 2008. Single-strand break repair and genetic disease. Nat. Rev. Genet. 9:619–631.
  • Capranico, G., et al. 2007. The effects of camptothecin on RNA polymerase II transcription: roles of DNA topoisomerase I. Biochimie 89:482–489.
  • Cleary, J. D., and C. E. Pearson. 2003. The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet. Genome Res. 100:25–55.
  • Dexheimer, T. S., S. Antony, C. Marchand, and Y. Pommier. 2008. Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med. Chem. 8:381–389.
  • Dion, V., Y. Lin, L. Hubert, Jr., R. A. Waterland, and J. H. Wilson. 2008. Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum. Mol. Genet. 17:1306–1317.
  • Dion, V., and J. H. Wilson. 2009. Instability and chromatin structure of expanded trinucleotide repeats. Trends Genet. 25:288–297.
  • Dragileva, E., et al. 2009. Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes. Neurobiol. Dis. 33:37–47.
  • French, S. L., et al. 2011. Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol. Cell. Biol. 31:482–494.
  • Gacy, A. M., G. Goellner, N. Juranic, S. Macura, and C. T. McMurray. 1995. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–540.
  • Gatchel, J. R., and H. Y. Zoghbi. 2005. Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6:743–755.
  • Gomes-Pereira, M., M. T. Fortune, L. Ingram, J. P. McAbney, and D. G. Monckton. 2004. Pms2 is a genetic enhancer of trinucleotide CAG·CTG repeat somatic mosaicism: implications for the mechanism of triplet repeat expansion. Hum. Mol. Genet. 13:1815–1825.
  • Gomes-Pereira, M., and D. G. Monckton. 2006. Chemical modifiers of unstable expanded simple sequence repeats: what goes up, could come down. Mutat. Res. 598:15–34.
  • Gomes-Pereira, M., and D. G. Monckton. 2004. Chemically induced increases and decreases in the rate of expansion of a CAG*CTG triplet repeat. Nucleic Acids Res. 32:2865–2872.
  • Gorbunova, V., et al. 2003. Selectable system for monitoring the instability of CTG/CAG triplet repeats in mammalian cells. Mol. Cell. Biol. 23:4485–4493.
  • Gorbunova, V., A. Seluanov, D. Mittelman, and J. H. Wilson. 2004. Genome-wide demethylation destabilizes CTG·CAG trinucleotide repeats in mammalian cells. Hum. Mol. Genet. 13:2979–2989.
  • Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. U. S. A. 89:5547–5551.
  • Hashem, V. I., et al. 2004. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res. 32:6334–6346.
  • Hsu, Y. L., P. L. Kuo, and C. C. Lin. 2004. Acacetin inhibits the proliferation of Hep G2 by blocking cell cycle progression and inducing apoptosis. Biochem. Pharmacol. 67:823–829.
  • Kovtun, I. V., K. O. Johnson, and C. T. McMurray. 2011. Cockayne syndrome B protein antagonizes OGG1 in modulating CAG repeat length in vivo. Aging 3:509–514.
  • Kovtun, I. V., et al. 2007. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 447:447–452.
  • Kovtun, I. V., and C. T. McMurray. 2001. Trinucleotide expansion in haploid germ cells by gap repair. Nat. Genet. 27:407–411.
  • La Spada, A. R., and J. P. Taylor. 2010. Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat. Rev. Genet. 11:247–258.
  • Lenzmeier, B. A., and C. H. Freudenreich. 2003. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet. Genome Res. 100:7–24.
  • Leppard, J. B., and J. J. Champoux. 2005. Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114:75–85.
  • Liao, Z., L. Thibaut, A. Jobson, and Y. Pommier. 2006. Inhibition of human tyrosyl-DNA phosphodiesterase by aminoglycoside antibiotics and ribosome inhibitors. Mol. Pharmacol. 70:366–372.
  • Lin, Y., S. Y. Dent, J. H. Wilson, R. D. Wells, and M. Napierala. 2010. R loops stimulate genetic instability of CTG·CAG repeats. Proc. Natl. Acad. Sci. U. S. A. 107:692–697.
  • Lin, Y., V. Dion, and J. H. Wilson. 2006. Transcription promotes contraction of CAG repeat tracts in human cells. Nat. Struct. Mol. Biol. 13:179–180.
  • Lin, Y., L. Hubert, Jr., and J. H. Wilson. 2009. Transcription destabilizes triplet repeats. Mol. Carcinog. 48:350–361.
  • Lin, Y., M. Leng, M. Wan, and J. H. Wilson. 2010. Convergent transcription through a long CAG tract destabilizes repeats and induces apoptosis. Mol. Cell. Biol. 30:4435–4451.
  • Lin, Y., and J. H. Wilson. 2009. Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells. DNA Repair 8:878–885.
  • Lin, Y., and J. H. Wilson. 2007. Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol. Cell. Biol. 27:6209–6217.
  • Liu, Y., et al. 2009. Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. J. Biol. Chem. 284:28352–28366.
  • Lopez-Castel, A., J. D. Cleary, and C. E. Pearson. 2010. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell. Biol. 11:165–170.
  • Mirkin, S. M.. 2007. Expandable DNA repeats and human disease. Nature 447:932–940.
  • Mittelman, D., et al. 2009. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc. Natl. Acad. Sci. U. S. A. 106:9607–9612.
  • Mittelman, D., K. Sykoudis, M. Hersh, Y. Lin, and J. H. Wilson. 2010. Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 15:753–759.
  • Napierala, M., A. Bacolla, and R. D. Wells. 2005. Increased negative superhelical density in vivo enhances the genetic instability of triplet repeat sequences. J. Biol. Chem. 280:37366–37376.
  • Orr, H. T., and H. Y. Zoghbi. 2007. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30:575–621.
  • Pearson, C. E., K. N. Edamura, and J. D. Cleary. 2005. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6:729–742.
  • Pearson, C. E., Y. H. Wang, J. D. Griffith, and R. R. Sinden. 1998. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 26:816–823.
  • Pfaffl, M. W.. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e45.
  • Pineiro, E., et al. 2003. Mutagenic stress modulates the dynamics of CTG repeat instability associated with myotonic dystrophy type 1. Nucleic Acids Res. 31:6733–6740.
  • Pommier, Y.. 2006. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer 6:789–802.
  • Poroikov, V. V., and D. A. Filimonov. 2002. How to acquire new biological activities in old compounds by computer prediction. J. Comput. Aided Mol. Des. 16:819–824.
  • Robertson, A. B., A. Klungland, T. Rognes, and I. Leiros. 2009. DNA repair in mammalian cells: base excision repair: the long and short of it. Cell. Mol. Life Sci. 66:981–993.
  • Savouret, C., et al. 2003. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J. 22:2264–2273.
  • Savouret, C., et al. 2004. MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol. Cell. Biol. 24:629–637.
  • Shelbourne, P. F., et al. 2007. Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain. Hum. Mol. Genet. 16:1133–1142.
  • Spiro, C., and C. T. McMurray. 2003. Nuclease-deficient FEN-1 blocks Rad51/BRCA1-mediated repair and causes trinucleotide repeat instability. Mol. Cell. Biol. 23:6063–6074.
  • van den Broek, W. J., M. R. Nelen, G. W. van der Heijden, D. G. Wansink, and B. Wieringa. 2006. Fen1 does not control somatic hypermutability of the (CTG)n*(CAG)n repeat in a knock-in mouse model for DM1. FEBS Lett. 580:5208–5214.
  • van den Broek, W. J., et al. 2002. Somatic expansion behavior of the (CTG)n repeat in myotonic dystrophy knock-in mice is differentially affected by Msh3 and Msh6 mismatch-repair proteins. Hum. Mol. Genet. 11:191–198.
  • van Loon, B., E. Markkanen, and U. Hubscher. 2010. Oxygen as a friend and enemy: how to combat the mutational potential of 8-oxo-guanine. DNA Repair 9:604–616.
  • Wang, J. C.. 2002. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell. Biol. 3:430–440.
  • Watase, K., et al. 2002. A long CAG repeat in the mouse Sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34:905–919.
  • Wells, R. D.. 2007. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 32:271–278.
  • Yang, Z., R. Lau, J. L. Marcadier, D. Chitayat, and C. E. Pearson. 2003. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am. J. Hum. Genet. 73:1092–1105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.