51
Views
36
CrossRef citations to date
0
Altmetric
Article

TSC-22 Promotes Transforming Growth Factor β-Mediated Cardiac Myofibroblast Differentiation by Antagonizing Smad7 Activity

, , , , , , , , & show all
Pages 3700-3709 | Received 05 Apr 2011, Accepted 08 Jul 2011, Published online: 20 Mar 2023

REFERENCES

  • Benjamin, I. J., et al. 1989. Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ. Res. 65:657–670.
  • Boyd, F. T., and J. Massague. 1989. Transforming growth factor-beta inhibition of epithelial cell proliferation linked to the expression of a 53-kDa membrane receptor. J. Biol. Chem. 264:2272–2278.
  • Bujak, M., and N. G. Frangogiannis. 2007. The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc. Res. 74:184–195.
  • Choi, S. J., et al. 2005. Tsc-22 enhances TGF-beta signaling by associating with Smad4 and induces erythroid cell differentiation. Mol. Cell. Biochem. 271:23–28.
  • Coyle, B., C. Freathy, T. W. Gant, R. A. Roberts, and K. Cain. 2003. Characterization of the transforming growth factor-beta 1-induced apoptotic transcriptome in FaO hepatoma cells. J. Biol. Chem. 278:5920–5928.
  • Denissova, N. G., C. Pouponnot, J. Long, D. He, and F. Liu. 2000. Transforming growth factor beta-inducible independent binding of SMAD to the Smad7 promoter. Proc. Natl. Acad. Sci. U. S. A. 97:6397–6402.
  • Doi, Y., H. Kawamata, Y. Ono, T. Fujimori, and Y. Imai. 2008. Expression and cellular localization of TSC-22 in normal salivary glands and salivary gland tumors: implications for tumor cell differentiation. Oncol. Rep. 19:609–616.
  • Ebisawa, T., et al. 2001. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276:12477–12480.
  • Feng, X. H., and R. Derynck. 1996. Ligand-independent activation of transforming growth factor (TGF) beta signaling pathways by heteromeric cytoplasmic domains of TGF-beta receptors. J. Biol. Chem. 271:13123–13129.
  • Feng, X. H., and R. Derynck. 2005. Specificity and versatility in tgf-beta signaling through Smads. Annu. Rev. Cell Dev. Biol. 21:659–693.
  • Huser, C. A., et al. 2010. TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death Differ. 17:304–315.
  • Iida, M., C. H. Anna, N. D. Gaskin, N. J. Walker, and T. R. Devereux. 2007. The putative tumor suppressor Tsc-22 is downregulated early in chemically induced hepatocarcinogenesis and may be a suppressor of Gadd45b. Toxicol. Sci. 99:43–50.
  • Itoh, S., and P. ten Dijke. 2007. Negative regulation of TGF-beta receptor/Smad signal transduction. Curr. Opin. Cell Biol. 19:176–184.
  • Jay, P., et al. 1996. Cloning of the human homologue of the TGF beta-stimulated clone 22 gene. Biochem. Biophys. Res. Commun. 222:821–826.
  • Kang, J. S., C. Liu, and R. Derynck. 2009. New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol. 19:385–394.
  • Kato, M., et al. 2010. Posttranscriptional upregulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J. Biol. Chem. 285:34004–34015.
  • Kavsak, P., et al. 2000. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol. Cell 6:1365–1375.
  • Kawamata, H., T. Fujimori, and Y. Imai. 2004. TSC-22 (TGF-beta stimulated clone-22): a novel molecular target for differentiation-inducing therapy in salivary gland cancer. Curr. Cancer Drug Targets 4:521–529.
  • Khoury, C. M., et al. 2008. A TSC22-like motif defines a novel antiapoptotic protein family. FEMS Yeast Res. 8:540–563.
  • Leask, A. 2007. TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc. Res. 74:207–212.
  • Lönn, P., A. Moren, E. Raja, M. Dahl, and A. Moustakas. 2009. Regulating the stability of TGFbeta receptors and Smads. Cell Res. 19:21–35.
  • Massagué, J. 2008. TGFbeta in cancer. Cell 134:215–230.
  • Nakashiro, K., et al. 1998. Down-regulation of TSC-22 (transforming growth factor beta-stimulated clone 22) markedly enhances the growth of a human salivary gland cancer cell line in vitro and in vivo. Cancer Res. 58:549–555.
  • Ohta, S., K. Yanagihara, and K. Nagata. 1997. Mechanism of apoptotic cell death of human gastric carcinoma cells mediated by transforming growth factor beta. Biochem. J. 324(Pt. 3):777–782.
  • Onichtchouk, D., et al. 1999. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401:480–485.
  • Pohlers, D., et al. 2009. TGF-beta and fibrosis in different organs—molecular pathway imprints. Biochim. Biophys. Acta 1792:746–756.
  • Porter, K. E., and N. A. Turner. 2009. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol. Ther. 123:255–278.
  • Rentsch, C. A., et al. 2006. Differential expression of TGFbeta-stimulated clone 22 in normal prostate and prostate cancer. Int. J. Cancer 118:899–906.
  • Ruiz-Ortega, M., J. Rodriguez-Vita, E. Sanchez-Lopez, G. Carvajal, and J. Egido. 2007. TGF-beta signaling in vascular fibrosis. Cardiovasc. Res. 74:196–206.
  • Shibanuma, M., T. Kuroki, and K. Nose. 1992. Isolation of a gene encoding a putative leucine zipper structure that is induced by transforming growth factor beta 1 and other growth factors. J. Biol. Chem. 267:10219–10224.
  • Shostak, K. O., et al. 2003. Downregulation of putative tumor suppressor gene TSC-22 in human brain tumors. J. Surg. Oncol. 82:57–64.
  • Stopa, M., et al. 2000. Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. The TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J. Biol. Chem. 275:29308–29317.
  • Treisman, J. E., Z. C. Lai, and G. M. Rubin. 1995. Shortsighted acts in the decapentaplegic pathway in Drosophila eye development and has homology to a mouse TGF-beta-responsive gene. Development 121:2835–2845.
  • Uchida, D., et al. 2003. Posttranscriptional regulation of TSC-22 (TGF-beta-stimulated clone-22) gene by TGF-beta 1. Biochem. Biophys. Res. Commun. 305:846–854.
  • von Gersdorff, G., et al. 2000. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J. Biol. Chem. 275:11320–11326.
  • Xu, Y., S. Iyengar, R. L. Roberts, S. B. Shappell, and D. M. Peehl. 2003. Primary culture model of peroxisome proliferator-activated receptor gamma activity in prostate cancer cells. J. Cell. Physiol. 196:131–143.
  • Yan, X., and Y. G. Chen. 2011. Smad7: not only a regulator, but also a cross-talk mediator of TGF-beta signalling. Biochem. J. 434:1–10.
  • Yan, X., et al. 2009. Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J. Biol. Chem. 284:30097–30104.
  • Yan, X., Z. Liu, and Y. Chen. 2009. Regulation of TGF-beta signaling by Smad7. Acta Biochim. Biophys. Sin. (Shanghai) 41:263–272.
  • Yu, J., et al. 2009. TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia. Blood 113:5558–5567.
  • Zhang, S., et al. 2007. Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol. Cell. Biol. 27:4488–4499.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.