46
Views
35
CrossRef citations to date
0
Altmetric
Article

p300-Dependent ATF5 Acetylation Is Essential for Egr-1 Gene Activation and Cell Proliferation and Survival

, , , &
Pages 3906-3916 | Received 01 Jul 2011, Accepted 08 Jul 2011, Published online: 20 Mar 2023

REFERENCES

  • Abdulkadir, S. A., et al. 2001. Impaired prostate tumorigenesis in Egr1-deficient mice. Nat. Med. 7: 101–107.
  • Angelastro, J. M., et al. 2006. Selective destruction of glioblastoma cells by interference with the activity or expression of ATF5. Oncogene 25: 907–916.
  • Angelastro, J. M., et al. 2003. Regulated expression of ATF5 is required for the progression of neural progenitor cells to neurons. J. Neurosci. 23: 4590–4600.
  • Angelastro, J. M., et al. 2005. Downregulation of activating transcription factor 5 is required for differentiation of neural progenitor cells into astrocytes. J. Neurosci. 25: 3889–3899.
  • Balasubramanyam, K., et al. 2004. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J. Biol. Chem. 279: 33716–33726.
  • Bannister, A. J., E. A. Miska, D. Gorlich, and T. Kouzarides. 2000. Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr. Biol. 10: 467–470.
  • Barlev, N. A., et al. 2001. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8: 1243–1254.
  • Baron, V., et al. 2003. Inhibition of Egr-1 expression reverses transformation of prostate cancer cells in vitro and in vivo. Oncogene 22: 4194–4204.
  • Chan, H. M., and N. B. La Thangue. 2001. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114: 2363–2373.
  • Cheung, P., et al. 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5: 905–915.
  • Clarkson, R. W., C. A. Shang, L. K. Levitt, T. Howard, and M. J. Waters. 1999. Ternary complex factors Elk-1 and Sap-1a mediate growth hormone-induced transcription of egr-1 (early growth response factor-1) in 3T3-F442A preadipocytes. Mol. Endocrinol. 13: 619–631.
  • Dluzen, D., G. Li, D. Tacelosky, M. Moreau, and D. X. Liu. 2011. Bcl-2 is a downstream target of ATF5 that mediates ATF5's pro-survival function. J. Biol. Chem. 286: 7705–7713.
  • Dornan, D., H. Shimizu, L. Burch, A. J. Smith, and T. R. Hupp. 2003. The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol. Cell. Biol. 23: 8846–8861.
  • Eid, M. A., M. V. Kumar, K. A. Iczkowski, D. G. Bostwick, and D. J. Tindall. 1998. Expression of early growth response genes in human prostate cancer. Cancer Res. 58: 2461–2468.
  • Franken, N. A., H. M. Rodermond, J. Stap, J. Haveman, and C. van Bree. 2006. Clonogenic assay of cells in vitro. Nat. Protoc. 1: 2315–2319.
  • Giordano, A., and M. L. Avantaggiati. 1999. p300 and CBP: partners for life and death. J. Cell. Physiol. 181: 218–230.
  • Goodman, R. H., and S. Smolik. 2000. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14: 1553–1577.
  • Greene, L. A., H. Y. Lee, and J. M. Angelastro. 2009. The transcription factor ATF5: role in neurodevelopment and neural tumors. J. Neurochem. 108: 11–22.
  • Gu, W., and R. G. Roeder. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.
  • Hai, T. W., F. Liu, W. J. Coukos, and M. R. Green. 1989. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers. Genes Dev. 3: 2083–2090.
  • Han, W., and G. N. Liu. 2010. EGR-1 decoy ODNs inhibit vascular smooth muscle cell proliferation and neointimal hyperplasia of balloon-injured arteries in rat. Life Sci. 86: 234–243.
  • Hanahan, D., and R. A. Weinberg. 2000. The hallmarks of cancer. Cell 100: 57–70.
  • Hipskind, R. A., D. Buscher, A. Nordheim, and M. Baccarini. 1994. Ras/MAP kinase-dependent and -independent signaling pathways target distinct ternary complex factors. Genes Dev. 8: 1803–1816.
  • Kabotyanski, E. B., et al. 2009. Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements. J. Biol. Chem. 284: 22815–22824.
  • Khachigian, L. M., V. Lindner, A. J. Williams, and T. Collins. 1996. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271: 1427–1431.
  • Kouzarides, T. 2007. Chromatin modifications and their function. Cell 128: 693–705.
  • Lassot, I., et al. 2005. p300 modulates ATF4 stability and transcriptional activity independently of its acetyltransferase domain. J. Biol. Chem. 280: 41537–41545.
  • Levy, L., et al. 2004. Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction. Mol. Cell. Biol. 24: 3404–3414.
  • Li, G., W. Li, J. M. Angelastro, L. A. Greene, and D. X. Liu. 2009. Identification of a novel DNA binding site and a transcriptional target for activating transcription factor 5 in c6 glioma and mcf-7 breast cancer cells. Mol. Cancer Res. 7: 933–943.
  • Li, G., Y. Xu, D. Guan, Z. Liu, and D. X. Liu. 2011. HSP70 promotes survival of C6 and U87 glioma cells by inhibition of ATF5 degradation. J. Biol. Chem. 286: 20251–20259.
  • Li, G., et al. 2010. Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol. Cell 38: 41–53.
  • Liao, J., et al. 1997. Growth hormone regulates ternary complex factors and serum response factor associated with the c-fos serum response element. J. Biol. Chem. 272: 25951–25958.
  • Liu, D. X., N. Nath, S. P. Chellappan, and L. A. Greene. 2005. Regulation of neuron survival and death by p130 and associated chromatin modifiers. Genes Dev. 19: 719–732.
  • Ma, J., et al. 2009. Targeted knockdown of EGR-1 inhibits IL-8 production and IL-8-mediated invasion of prostate cancer cells through suppressing EGR-1/NF-kappaB synergy. J. Biol. Chem. 284: 34600–34606.
  • Macdonald, N., et al. 2005. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol. Cell 20: 199–211.
  • Marais, R., J. Wynne, and R. Treisman. 1993. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73: 381–393.
  • Mason, J. L., et al. 2005. ATF5 regulates the proliferation and differentiation of oligodendrocytes. Mol. Cell Neurosci. 29: 372–380.
  • McManus, K. J., and M. J. Hendzel. 2003. Quantitative analysis of CBP- and P300-induced histone acetylations in vivo using native chromatin. Mol. Cell. Biol. 23: 7611–7627.
  • Monaco, S. E., J. M. Angelastro, M. Szabolcs, and L. A. Greene. 2007. The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. Int. J. Cancer 120: 1883–1890.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatani. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87: 953–959.
  • Parra, E., and J. Ferreira. 2010. The effect of siRNA-Egr-1 and camptothecin on growth and chemosensitivity of breast cancer cell lines. Oncol. Rep. 23: 1159–1165.
  • Persengiev, S. P., L. R. Devireddy, and M. R. Green. 2002. Inhibition of apoptosis by ATFx: a novel role for a member of the ATF/CREB family of mammalian bZIP transcription factors. Genes Dev. 16: 1806–1814.
  • Price, M. A., A. E. Rogers, and R. Treisman. 1995. Comparative analysis of the ternary complex factors Elk-1, SAP-1a and SAP-2 (ERP/NET). EMBO J. 14: 2589–2601.
  • Saint Just Ribeiro, M., M. L. Hansson, and A. E. Wallberg. 2007. A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem. J. 404: 289–298.
  • Sheng, Z., et al. 2010. A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications. Nat. Med. 16: 671–677.
  • Sterner, D. E., and S. L. Berger. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64: 435–459.
  • Sukhatme, V. P., et al. 1988. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 53: 37–43.
  • Sun, Y., X. Jiang, S. Chen, and B. D. Price. 2006. Inhibition of histone acetyltransferase activity by anacardic acid sensitizes tumor cells to ionizing radiation. FEBS Lett. 580: 4353–4356.
  • Svaren, J., et al. 2000. EGR1 target genes in prostate carcinoma cells identified by microarray analysis. J. Biol. Chem. 275: 38524–38531.
  • Tanaka, Y., et al. 2000. Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech. Dev. 95: 133–145.
  • Tang, Y., W. Zhao, Y. Chen, Y. Zhao, and W. Gu. 2008. Acetylation is indispensable for p53 activation. Cell 133: 612–626.
  • Tolhuis, B., R. J. Palstra, E. Splinter, F. Grosveld, and W. de Laat. 2002. Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10: 1453–1465.
  • Vo, N., and R. H. Goodman. 2001. CREB-binding protein and p300 in transcriptional regulation. J. Biol. Chem. 276: 13505–13508.
  • Whitmarsh, A. J., P. Shore, A. D. Sharrocks, and R. J. Davis. 1995. Integration of MAP kinase signal transduction pathways at the serum response element. Science 269: 403–407.
  • Yao, T. P., et al. 1998. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93: 361–372.
  • Yu, J., I. de Belle, H. Liang, and E. D. Adamson. 2004. Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses. Mol. Cell 15: 83–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.