70
Views
92
CrossRef citations to date
0
Altmetric
Article

Cells Lacking Rieske Iron-Sulfur Protein Have a Reactive Oxygen Species-Associated Decrease in Respiratory Complexes I and IV

, &
Pages 415-429 | Received 03 Aug 2011, Accepted 10 Nov 2011, Published online: 20 Mar 2023

REFERENCES

  • Acin-Perez R, et al. 2004. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol. Cell 13: 805–815.
  • Acín-pérez R, Fernández-Silva P, Peleato ML, Pérez-Martos A, Enriquez JA. 2008. Respiratory active mitochondrial supercomplexes. Mol. Cell 32: 529–539.
  • Barrientos A, Fontanesi F, Diaz F. 2009. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays. Curr. Protoc. Hum. Genet. Chapter 19:Unit19.3.
  • Bell EL, et al. 2007. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 177: 1029–1036.
  • Brandt U, Yu L, Yu CA, Trumpower BL. 1993. The mitochondrial targeting presequence of the Rieske iron-sulfur protein is processed in a single step after insertion into the cytochrome bc1 complex in mammals and retained as a subunit in the complex. J. Biol. Chem. 268: 8387–8390.
  • Brunelle JK, et al. 2005. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1: 409–414.
  • Bultema JB, Braun HP, Boekema EJ, Kouril R. 2009. Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim. Biophys. Acta 1787: 60–67.
  • Calvaruso MA, Smeitink J, Nijtmans L. 2008. Electrophoresis techniques to investigate defects in oxidative phosphorylation. Methods 46: 281–287.
  • Calvaruso MA, et al. 7 October 2011. Mitochondrial complex III stabilizes complex I in the absence of NDUFS4 to provide partial activity. Hum. Mol. Gen. [Epub ahead of print
  • Castello PR, David PS, McClure T, Crook Z, Poyton RO. 2006. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell metabolism 3: 277–287.
  • Chandel NS. 2010. Mitochondrial complex III: an essential component of universal oxygen sensing machinery? Respir. Physiol. Neurobiol. 174: 175–181.
  • Chandel NS, et al. 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. U. S. A. 95: 11715–11720.
  • Chandel NS, et al. 2000. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J. Biol. Chem/ 275: 25130–25138.
  • Chua YL, et al. 2010. Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J. Biol. Chem. 285: 31277–31284.
  • Comito G, et al. 2011. HIF-1alpha stabilization by mitochondrial ROS promotes Met-dependent invasive growth and vasculogenic mimicry in melanoma cells. Free Rad. Biol. Med. 51: 893–904.
  • Cruciat CM, Hell K, Folsch H, Neupert W, Stuart RA. 1999. Bcs1p, an AAA-family member, is a chaperone for the assembly of the cytochrome bc(1) complex. EMBO J. 18: 5226–5233.
  • D'Aurelio M, Gajewski CD, Lenaz G, Manfredi G. 2006. Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum. Mol. Genet. 15: 2157–2169.
  • Deng K, Shenoy SK, Tso SC, Yu L, Yu CA. 2001. Reconstitution of mitochondrial processing peptidase from the core proteins (subunits I and II) of bovine heart mitochondrial cytochrome bc(1) complex. J. Biol. Chem. 276: 6499–6505.
  • Diaz F, Barrientos A, Fontanesi F. 2009. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using blue native gel electrophoresis. Curr. Protoc. Hum. Genet. Chapter 19:Unit19.4.
  • Diaz F, Fukui H, Garcia S, Moraes CT. 2006. Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol. Cell. Biol. 26: 4872–4881.
  • Diaz F, et al. 2008. Pathophysiology and fate of hepatocytes in a mouse model of mitochondrial hepatopathies. Gut 57: 232–242.
  • Diaz F, Thomas CK, Garcia S, Hernandez D, Moraes CT. 2005. Mice lacking COX10 in skeletal muscle recapitulate the phenotype of progressive mitochondrial myopathies associated with cytochrome c oxidase deficiency. Hum. Mol. Genet. 14: 2737–2748.
  • Fandrey J, Frede S, Jelkmann W. 1994. Role of hydrogen peroxide in hypoxia-induced erythropoietin production. Biochem. J. 303(Pt 2): 507–510.
  • Fato R, et al. 2009. Differential effects of mitochondrial complex I inhibitors on production of reactive oxygen species. Biochim. Biophys. Acta 1787: 384–392.
  • Fernandez-Vizarra E, et al. 2007. Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum. Mol. Genet. 16: 1241–1252.
  • Frenzel M, Rommelspacher H, Sugawa MD, Dencher NA. 2010. Ageing alters the supramolecular architecture of OxPhos complexes in rat brain cortex. Exp. Gerontol. 45: 563–572.
  • Galkin A, Abramov AY, Frakich N, Duchen MR, Moncada S. 2009. Lack of oxygen deactivates mitochondrial complex I: implications for ischemic injury? J. Biol. Chem. 284: 36055–36061.
  • Garcia S, Diaz F, Moraes CT. 2008. A 3′ UTR modification of the mitochondrial Rieske iron sulfur protein in mice produces a specific skin pigmentation phenotype. J. Investig. Dermatol. 128: 2343–2345.
  • Genova ML, et al. 2008. Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim. Biophys. Acta 1777: 740–746.
  • Genova ML, et al. 2001. The site of production of superoxide radical in mitochondrial complex I is not a bound ubisemiquinone but presumably iron-sulfur cluster N2. FEBS Lett. 505: 364–368.
  • Gil-Borlado MC, et al. 2009. Pathogenic mutations in the 5′ untranslated region of BCS1L mRNA in mitochondrial complex III deficiency. Mitochondrion 9: 299–305.
  • Graham LA, Trumpower BL. 1991. Mutational analysis of the mitochondrial Rieske iron-sulfur protein of Saccharomyces cerevisiae. III. Import, protease processing, and assembly into the cytochrome bc1 complex of iron-sulfur protein lacking the iron-sulfur cluster. J. Biol. Chem. 266: 22485–22492.
  • Guzy RD, et al. 2005. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1: 401–408.
  • Hamanaka RB, Chandel NS. 2010. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35: 505–513.
  • Han D, Williams E, Cadenas E. 2001. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 353: 411–416.
  • Hinson JT, et al. 2007. Missense mutations in the BCS1L gene as a cause of the Björnstad syndrome. N. Engl. J. Med. 356: 809–819.
  • Jung HJ, et al. 2010. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J. Biol. Chem. 285: 11584–11595.
  • Kelso GF, et al. 2001. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 276: 4588–4596.
  • Kronekova Z, Rodel G. 2005. Organization of assembly factors Cbp3p and Cbp4p and their effect on bc(1) complex assembly in Saccharomyces cerevisiae. Curr. Genet. 47: 203–212.
  • Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT. 2007. Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol. Cell. Biol. 27: 4228–4237.
  • Lenaz G. 2001. The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52: 159–164.
  • Lenaz G, Genova ML. 2010. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid. Redox Signal. 12: 961–1008.
  • Li Y, et al. 2007. An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J. Biol. Chem. 282: 17557–17562.
  • Liu Y, Schubert DR. 2009. The specificity of neuroprotection by antioxidants. J. Biomed. Sci. 16: 98.
  • Lochmuller H, Johns T, Shoubridge EA. 1999. Expression of the E6 and E7 genes of human papillomavirus (HPV16) extends the life span of human myoblasts. Exp. Cell Res. 248: 186–193.
  • Mansfield KD, et al. 2005. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 1: 393–399.
  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT. 2006. Mitochondrial respiratory chain supercomplexes are destabilized in Barth syndrome patients. J. Mol. Biol. 361: 462–469.
  • Mehta JP, et al. 2008. Generation of oxidants by hypoxic human pulmonary and coronary smooth-muscle cells. Chest 133: 1410–1414.
  • Moran M, et al. 2010. Cellular pathophysiological consequences of BCS1L mutations in mitochondrial complex III enzyme deficiency. Hum. Mutat. 31: 930–941.
  • Patten DA, et al. 2010. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol. Biol. Cell 21: 3247–3257.
  • Perales-Clemente E, et al. 2010. Five entry points of the mitochondrially encoded subunits in mammalian complex I assembly. Mol. Cell. Biol. 30: 3038–3047.
  • Pfeiffer K, et al. 2003. Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 278: 52873–52880.
  • Poyton RO, Ball KA, Castello PR. 2009. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 20: 332–340.
  • Rosca MG, et al. 2008. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc. Res. 80: 30–39.
  • Saddar S, Dienhart MK, Stuart RA. 2008. The F1F0-ATP synthase complex influences the assembly state of the cytochrome bc1-cytochrome oxidase supercomplex and its association with the TIM23 machinery. J. Biol. Chem. 283: 6677–6686.
  • Salnikow K, Su W, Blagosklonny MV, Costa M. 2000. Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res. 60: 3375–3378.
  • Sanjuan-Pla A, et al. 2005. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett. 579: 2669–2674.
  • Schagger H, Pfeiffer K. 2001. The ratio of oxidative phosphorylation complexes I-V in bovine heart mitochondria and the composition of respiratory chain supercomplexes. J. Biol. Chem. 276: 37861–37867.
  • Soto IC, et al. 2009. Synthesis of cytochrome c oxidase subunit 1 is translationally downregulated in the absence of functional F1F0-ATP synthase. Biochim. Biophys. Acta 1793: 1776–1786.
  • Strecker V, Wumaier Z, Wittig I, Schagger H. 2010. Large pore gels to separate mega protein complexes larger than 10MDa by blue native electrophoresis: isolation of putative respiratory strings or patches. Proteomics 10: 3379–3387.
  • Sun J, Trumpower BL. 2003. Superoxide anion generation by the cytochrome bc1 complex. Arch. Biochem. Biophys. 419: 198–206.
  • Trumpower BL. 1990. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J. Biol. Chem. 265: 11409–11412.
  • Vaux EC, Metzen E, Yeates KM, Ratcliffe PJ. 2001. Regulation of hypoxia-inducible factor is preserved in the absence of a functioning mitochondrial respiratory chain. Blood 98: 296–302.
  • Vempati UD, Han X, Moraes CT. 2009. Lack of cytochrome c in mouse fibroblasts disrupts assembly/stability of respiratory complexes I and IV. J. Biol. Chem. 284: 4383–4391.
  • Vinogradov AD. 1998. Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta 1364: 169–185.
  • Waypa GB, et al. 2010. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ. Res. 106: 526–535.
  • Wenz T, et al. 2009. Role of phospholipids in respiratory cytochrome bc(1) complex catalysis and supercomplex formation. Biochim. Biophys. Acta 1787: 609–616.
  • Weydert CJ, Cullen JJ. 2010. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 5: 51–66.
  • Wittig I, Carrozzo R, Santorelli FM, Schagger H. 2006. Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim. Biophys. Acta 1757: 1066–1072.
  • Zara V, Conte L, Trumpower BL. 2009. Evidence that the assembly of the yeast cytochrome bc1 complex involves the formation of a large core structure in the inner mitochondrial membrane. FEBS J. 276: 1900–1914.
  • Zara V, Conte L, Trumpower BL. 2007. Identification and characterization of cytochrome bc(1) subcomplexes in mitochondria from yeast with single and double deletions of genes encoding cytochrome bc(1) subunits. FEBS J. 274: 4526–4539.
  • Zhang L, Yu L, Yu CA. 1998. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273: 33972–33976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.