10
Views
12
CrossRef citations to date
0
Altmetric
Article

Self-Interaction, Nucleic Acid Binding, and Nucleic Acid Chaperone Activities Are Unexpectedly Retained in the Unique ORF1p of Zebrafish LINE

, &
Pages 458-469 | Received 23 Aug 2011, Accepted 10 Nov 2011, Published online: 20 Mar 2023

REFERENCES

  • Cost GJ, Feng Q, Jacquier A, Boeke JD. 2002. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21:5899–5910.
  • Dawson A, Hartswood E, Paterson T, Finnegan DJ. 1997. A LINE-like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids. EMBO J. 16:4448–4455.
  • Doucet AJ, et al. 2010. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet. 6:e1001150.
  • Eickbush TH, Malik HS. 2002. Origins and evolution of retrotransposons, p 1111–1144. InCraig NL, Craigie R, Gellert M, Lambowitz AM (ed), Mobile DNA II. American Society for Microbiology, Washington, DC.
  • Evans JD, Peddigari S, Chaurasiya KR, Williams MC, Martin SL. 2011. Paired mutations abolish and restore the balanced annealing and melting activities of ORF1p that are required for LINE-1 retrotransposition. Nucleic Acids Res. 39:5611–5621.
  • Feng Q, Moran JV, Kazazian HHJr, Boeke JD. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916.
  • Goodier JL, Kazazian HHJr. 2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23–35.
  • Heras SR, Lopez MC, Garcia-Perez JL, Martin SL, Thomas MC. 2005. The L1Tc C-terminal domain from Trypanosoma cruzi non-long terminal repeat retrotransposon codes for a protein that bears two C2H2 zinc finger motifs and is endowed with nucleic acid chaperone activity. Mol. Cell. Biol. 25:9209–9220.
  • Ito M, Matsuo Y, Nishikawa K. 1997. Prediction of protein secondary structure using the 3D-1D compatibility algorithm. Comput. Appl. Biosci. 13:415–424.
  • Januszyk K, et al. 2007. Identification and solution structure of a highly conserved C-terminal domain within ORF1p required for retrotransposition of long interspersed nuclear element-1. J. Biol. Chem. 282:24893–24904.
  • Kapitonov VV, Jurka J. 2003. The esterase and PHD domains in CR1-like non-LTR retrotransposons. Mol. Biol. Evol. 20:38–46.
  • Kazazian HHJr. 2004. Mobile elements: drivers of genome evolution. Science 303:1626–1632.
  • Khazina E, Weichenrieder O. 2009. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc. Natl. Acad. Sci. U. S. A. 106:731–736.
  • Kulpa DA, Moran JV. 2005. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum. Mol. Genet. 14:3237–3248.
  • Levin JG, Guo J, Rouzina I, Musier-Forsyth K. 2005. Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. Prog. Nucleic Acid Res. Mol. Biol. 80:217–286.
  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605.
  • Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252:1162–1164.
  • Malik HS, Burke WD, Eickbush TH. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16:793–805.
  • Martin SL, Branciforte D, Keller D, Bain DL. 2003. Trimeric structure for an essential protein in L1 retrotransposition. Proc. Natl. Acad. Sci. U. S. A. 100:13815–13820.
  • Martin SL, Bushman FD. 2001. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21:467–475.
  • Martin SL, et al. 2005. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J. Mol. Biol. 348:549–561.
  • Martin SL, Li J, Weisz JA. 2000. Deletion analysis defines distinct functional domains for protein-protein and nucleic acid interactions in the ORF1 protein of mouse LINE-1. J. Mol. Biol. 304:11–20.
  • Matsumoto T, Hamada M, Osanai M, Fujiwara H. 2006. Essential domains for ribonucleoprotein complex formation required for retrotransposition of telomere-specific non-long terminal repeat retrotransposon SART1. Mol. Cell. Biol. 26:5168–5179.
  • Moran JV, et al. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927.
  • Nishikawa K, Noguchi T. 1991. Predicting protein secondary structure based on amino acid sequence. Methods Enzymol. 202:31–44.
  • Nomura Y, et al. 2006. Solution structure and functional importance of a conserved RNA hairpin of eel LINE UnaL2. Nucleic Acids Res. 34:5184–5193.
  • Putnam NH, et al. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94.
  • Rajkowitsch L, Schroeder R. 2007. Dissecting RNA chaperone activity. RNA. 13:2053–2060.
  • Seleme MC, Busseau I, Malinsky S, Bucheton A, Teninges D. 1999. High-frequency retrotransposition of a marked I factor in Drosophila melanogaster correlates with a dynamic expression pattern of the ORF1 protein in the cytoplasm of oocytes. Genetics 151:761–771.
  • Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33:W244–W248.
  • Sugano T, Kajikawa M, Okada N. 2006. Isolation and characterization of retrotransposition-competent LINEs from zebrafish. Gene 365:74–82.
  • Suzuki J, et al. 2009. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 5:e1000461.
  • Takahashi H, Fujiwara H. 2002. Transplantation of target site specificity by swapping the endonuclease domains of two LINEs. EMBO J. 21:408–417.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.