5
Views
21
CrossRef citations to date
0
Altmetric
Research Article

A Trinucleotide Repeat-Associated Increase in the Level of Alu RNA-Binding Protein Occurred during the Same Period as the Major Alu Amplification That Accompanied Anthropoid Evolution

, , &
Pages 2109-2116 | Received 27 Oct 1994, Accepted 09 Jan 1995, Published online: 30 Mar 2023

REFERENCES

  • Batzer, M. A., G. E. Kilroy, P. E. Richard, T. H. Shaikh, T. D. Desselle, C. L. Hoppens, and P. L. Deininger. 1990. Structure and variability of recently inserted Alu family members. Nucleic Acids Res. 18:6793–6798.
  • Batzer, M. A., C. W. Schmid, and P. L. Deininger. 1993. Evolutionary analyses of repetitive DNA sequences. Methods Enzymol. 224:213–232.
  • Bennett, K. L., R. E. Hill, D. F. Pietras, M. Woodworth-Gutai, C. Kane-Haas, J. M. Houston, J. K. Heath, and N. D. Hastie. 1984. Most highly repeated dispersed DNA families in the mouse genome. Mol. Cell. Biol. 4:1561–1571.
  • Bovia, F., N. Bui, and K. Strub. 1994. The heterodimeric subunit SRP9/14 of the signal recognition particle functions as permuted single polypeptide chain. Nucleic Acids Res. 22:2028–2035.
  • Britten, R. J. 1994. Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc. Natl. Acad. Sci. USA 91:6148–6150.
  • Britten, R. J., W. F. Baron, D. B. Stout, and E. H. Davidson. 1988. Sources and evolution of human Alu repeated sequences. Proc. Natl. Acad. Sci. USA 85:4770–4774.
  • Britten, R. J., D. B. Stout, and E. H. Davidson. 1989. The current source of human Alu retroposons is a conserved gene shared with Old World monkey. Proc. Natl. Acad. Sci. USA 86:3718–3722.
  • Caskey, C. T., S. Pizzuti, Y.-H. Fu, R. G. Fenwick, Jr., and D. L. Nelson. 1992. Triplet repeat mutations in human disease. Science 256:784–789.
  • Chang, D.-Y., and R. J. Maraia. 1993. A cellular protein binds B1 and Alu small cytoplasmic RNAs in vitro. J. Biol. Chem. 268:6423–6428.
  • Chang, D.-Y., B. Nelson, T. Bilyeu, K. Hsu, G. J. Darlington, and R. J. Maraia. 1994. A human Alu RNA-binding protein whose expression is associated with accumulation of small cytoplasmic Alu RNA. Mol. Cell. Biol. 14:3949–3959.
  • Daniels, G. R., and P. L. Deininger. 1991. Characterization of a third major SINE family of repetitive sequences in the galago genome. Nucleic Acids Res. 19:1649–1656.
  • Daniels, G. R., G. M. Fox, D. Loewensteiner, C. W. Schmid, and P. L. Deininger. 1983. Species-specific homogeneity of the primate Alu family of repeated DNA sequences. Nucleic Acids Res. 11:7579–7593.
  • Deininger, P. L., and M. A. Batzer. 1993. Evolution of retroposons. Evol. Biol. 27:157–196.
  • Economou-Pachnis, A., and P. N. Tsichlis. 1985. Insertion of an Alu SINE in the human homologue of the Mlvi-2 locus. Nucleic Acids Res. 13:8379–8387.
  • Englander, E. W., A. P. Wolffe, and B. H. Howard. 1993. Nucleosome interactions with a human Alu element: transcriptional repression and effects of template methylation. J. Biol. Chem. 268:19565–19573.
  • Gostout, B., Q. Liu, and S. S. Sommer. 1993. ‘‘Cryptic’’ repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY (i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. Am. J. Hum. Genet. 52:1182–1190.
  • Gottlieb, E., and J. A. Steitz. 1989. Function of the mammalian La protein: evidence for its action in transcription termination by RNA polymerase III. EMBO J. 8:851–861.
  • Green, L. K., D.-Y. Chang, and R. J. Maraia. Unpublished observations.
  • Gundelfinger, E. D., E. Krause, M. Melli, and B. Dobberstein. 1983. The organization of the 7SL RNA in the signal recognition particle. Nucleic Acids Res. 11:7363–7374.
  • He, X.-P., N. Bataille, and H. M. Fried. 1994. Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain. J. Cell Sci. 107:903–912.
  • Hsu, K., D. Y. Chang, and R. J. Maraia. Human signal recognition particle Alu-associated protein also binds Alu interspersed repeat sequence RNAs. Submitted for publication.
  • Human Genetic Mutant Cell Repository. 1992. 1992–1993 catalog of cell lines, p. 579–585. NIH publication no. 92-2011. National Institute of General Medical Sciences, Bethesda, Md.
  • Hutchinson, G. B., S. E. Andrew, H. McDonald, Y. P. Goldberg, R. Graham, J. M. Rommens, and M. R. Hayden. 1993. An Alu element retroposition in two families with Huntington disease defines a new active Alu subfamily. Nucleic Acids Res. 21:3379–3383.
  • Jagadeeswaran, P., B. G. Forget, and S. M. Weissman. 1981. Short interspersed repetitive DNA elements in eucaryotes: transposable DNA elements generated by reverse transcription of RNA Pol III transcripts? Cell 26:141–142.
  • Jelinek, W. R., and C. W. Schmid. 1982. Repetitive sequences in eukaryotic DNA and their expression. Annu. Rev. Biochem. 51:813–844.
  • Jurka, J. 1993. A new subfamily of recently retroposed human Alu repeats. Nucleic Acids Res. 21:2252.
  • Jurka, J., and A. Milosavljevic. 1991. Reconstruction and analysis of human Alu genes. J. Mol. Evol. 32:105–121.
  • Jurka, J., and T. Smith. 1988. A fundamental division in the Alu family of repeated sequences. Proc. Natl. Acad. Sci. USA 85:4775–4778.
  • Jurka, J., and E. Zuckerkandl. 1991. Free left arms as precursor molecules in the evolution of Alu sequences. J. Mol. Evol. 33:49–56.
  • Krayev, A. S., D. A. Kramerov, K. G. Skryabin, A. P. Ryskov, A. A. Bayev, and G. P. Georgiev. 1980. The nucleotide sequence of the ubiquitous repetitive DNA sequence B1 complementary to the most abundant class of mouse fold-back RNA. Nucleic Acids Res. 8:1201–1215.
  • Labuda, D., D. Sinnett, C. Richer, J.-M. Deragon, and G. Striker. 1991. Evolution of mouse B1 repeats: 7SL RNA folding pattern conserved. J. Mol. Evol. 32:405–414.
  • Labuda, D., and E. Zietkiewicz. 1994. Evolution of secondary structure in the family of 7SL-like RNAs. J. Mol. Evol. 39:506–518.
  • Liu, W.-M., and C. W. Schmid. 1993. Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation. Nucleic Acids Res. 21:1351–1359.
  • Maraia, R. 1991. The subset of mouse B1 (Alu-equivalent) sequences expressed as small processed cytoplasmic transcripts. Nucleic Acids Res. 19: 5695–5702.
  • Maraia, R., M. Zasloff, P. Plotz, and S. Adeniyi-Jones. 1988. Pathway of B1-Alu expression in microinjected oocytes: Xenopus laevis proteins associated with nuclear precursor and processed cytoplasmic RNAs. Mol. Cell. Biol. 8:4433–4440.
  • Maraia, R. J., D.-Y. Chang, A. P. Wolffe, R. L. Vorce, and K. Hsu. 1992. The RNA polymerase III terminator used by a B1-Alu element can modulate 39 processing of the intermediate RNA product. Mol. Cell. Biol. 12:1500–1506.
  • Maraia, R. J., C. Driscoll, T. Bilyeu, K. Hsu, and G. J. Darlington. 1993. Multiple dispersed loci produce small cytoplasmic Alu, RNA. Mol. Cell. Biol. 13:4233–4241.
  • Maraia, R. J., D. J. Kenan, and J. D. Keene. 1994. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. Mol. Cell. Biol. 14:2147–2158.
  • Martin, R. D. 1994. Primate palaeontology: bonanza at Shanghuang. Nature (London) 368:586–587.
  • Matera, A. G., U. Hellmann, M. F. Hintz, and C. W. Schmid. 1990. Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res. 18:6019–6023.
  • Matera, A. G., U. Hellmann, and C. W. Schmid. 1990. A transpositionally and transcriptionally competent Alu subfamily. Mol. Cell. Biol. 10:5424–5432.
  • Mitchell, G. A., D. Labuda, G. Fontaine, J. M. Saudubray, J. P. Bonnefont, S. Lyonnet, L. C. Brody, G. Steel, C. Obie, and D. Valle. 1991. Splice-mediated insertion of an Alu sequence inactivates ornithine d-aminotrans-ferase: a role for Alu elements in human mutation. Proc. Natl. Acad. Sci. USA 88:815–819.
  • Muratani, K., T. Hada, Y. Yamamoto, T. Kaneko, Y. Shigeto, T. Ohue, J. Furuyama, and K. Higashino. 1991. Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc. Natl. Acad. Sci. USA 88:11315–11319.
  • Ohshima, K., R. Koishi, M. Matsuo, and N. Okada. 1993. Several short interspersed repetitive elements (SINEs) in distant species may have originated from a common ancestral retrovirus: characterization of a squid SINE and a possible mechanism for generation of tRNA-derived retroposons. Proc. Natl. Acad. Sci. USA 90:6260–6264.
  • Okada, N. 1991. SINEs. Curr. Opin. Genet. Dev. 1:498–504.
  • Panning, B., and J. R. Smiley. 1993. Activation of RNA polymerase III transcription of human Alu repetitive elements by adenovirus type 5: requirement for the E1b 58-kilodalton protein and the products of E4 open reading frames 3 and 6. Mol. Cell. Biol. 13:3231–3244.
  • Panning, B., and J. R. Smiley. 1994. Activation of RNA polymerase III transcription of human Alu elements by herpes simplex virus. Virology 202:408–417.
  • Quentin, Y. 1988. The Alu family developed through successive waves of fixation closely connected with primate lineage history. J. Mol. Evol. 27:194–202.
  • Quentin, Y. 1992. Fusion of a free left Alu monomer and a free right Alu monomer at the origin of the Alu family in the primate genomes. Nucleic Acids Res. 20:487–493.
  • Quentin, Y. 1992. Origin of the Alu family: a family of Alu-like monomers gave birth to the left and the right arms of the Alu elements. Nucleic Acids Res. 20:3397–3401.
  • Quentin, Y. 1994. A master sequence related to a free left Alu monomer (FLAM) at the origin of the B1 family in rodent genomes. Nucleic Acids Res. 22:2222–2227.
  • Reddy, R. 1988. Compilation of small RNA sequences. Nucleic Acids Res. 16:71–85.
  • Rogers, J. H. 1985. The origin and evolution of retroposons. Int. Rev. Cytol. 93:187–279.
  • Russanova, V. R., C. T. Driscoll, and B. H. Howard. Chromatin-mediated repression of Alu repetitive sequence expression. Submitted for publication.
  • Ryan, S. C., and A. Dugaiczyk. 1989. Newly arisen DNA repeats in primate phylogeny. Proc. Natl. Acad. Sci. USA 86:9360–9364.
  • Sawada, J., and C. W. Schmid. 1986. Primate evolution of the alpha-globin gene cluster and its Alu-like repeats. J. Mol. Biol. 192:693–709.
  • Schmid, C., and R. Maraia. 1992. Transcriptional regulation and transpositional selection of active SINE sequences. Curr. Opin. Genet. Dev. 2:874–882.
  • Schmid, C. W., and C. K. J. Shen. 1985. The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates, p. 323–358. In R. J. MacIntyre (ed.), Molecular evolutionary genetics. Plenum Press, New York.
  • Sharp, P. A. 1983. Conversion of RNA to DNA in mammals: Alu-like elements and pseudogenes. Nature (London) 301:471–472.
  • Shen, M. R., M. A. Batzer, and P. L. Deininger. 1991. Evolution of the master Alu gene(s). J. Mol. Evol. 33:311–320.
  • Siegel, V., and P. Walter. 1986. Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature (London) 320:81–84.
  • Siegel, V., and P. Walter. 1988. Each of the activities of signal recognition particle (SRP) is contained within a distinct domain: analysis of biochemical mutants of SRP. Cell 52:39–49.
  • Sinnett, D., C. Richer, J.-M. Deragon, and D. Labuda. 1991. Alu RNA secondary structure consists of two independent 7 SL RNA-like folding units. J. Biol. Chem. 266:8675–8678.
  • Sinnett, D., C. Richer, J.-M. Deragon, and D. Labuda. 1992. Alu RNA transcripts in human embryonal carcinoma cells: model of post-transcriptional selection of master sequences. J. Mol. Biol. 226:689–706.
  • Slagel, V., E. Flemington, V. Traina-Dorge, H. Bradshaw, Jr., and P. L. Deininger. 1987. Clustering and sub-family relationships of the Alu family in the human genome. Mol. Biol. Evol. 4:19–29.
  • Strub, K., J. B. Moss, and P. Walter. 1991. Binding sites of the 9- and 14-kilodalton heterodimeric protein subunit of the signal recognition particle (SRP) are contained exclusively in the Alu domain of SRP RNA and contain a sequence motif that is conserved in evolution. Mol. Cell. Biol. 11:3949–3959.
  • Strub, K., and P. Walter. 1989. Isolation of a cDNA clone of the 14-kDa subunit of the signal recognition particle by cross-hybridization of differently primed polymerase chain reactions. Proc. Natl. Acad. Sci. USA 86:9747–9751.
  • Strub, K., and P. Walter. 1990. Assembly of the Alu domain of the signal recognition particle (SRP): dimerization of the two protein components is required for efficient binding to SRP RNA. Mol. Cell. Biol. 10:777–784.
  • Strub, K., N. Wolff, and S. Oertle. 1993. The Alu-domain of the signal recognition particle, p. 635–645. In K. H. Nierhaus (ed.), The translational apparatus. Plenum Press, New York.
  • Tiedge, H., W. Chen, and J. Brosius. 1993. Primary structure, neural-specific expression, and dendritic location of human BC200 RNA. J. Neurosci. 13: 2382–2390.
  • Ullu, E., S. Murphy, and M. Melli. 1982. Human 7SL RNA consists of a 140 nucleotide middle-repetitive sequence inserted in an Alu sequence. Cell 29:195–202.
  • Ullu, E., and C. Tschudi. 1984. Alu sequences are processed 7SL RNA genes. Nature (London) 312:171–172.
  • Van Arsdell, S. W., R. A. Denison, L. B. Bernstein, and A. M. Weiner. 1981. Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26:11–17.
  • Wallace, M. R., L. B. Andersen, A. M. Saulino, P. E. Gregory, T. W. Glover, and F. S. Collins. 1991. A de novo Alu insertion results in neurofibromatosis type 1. Nature (London) 353:864–866.
  • Walter, P., and G. Blobel. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature (London) 299:691–698.
  • Walter, P., and G. Blobel. 1983. Disassembly and reconstitution of signal recognition particle. Cell 34:525–533.
  • Walter, P., and G. Blobel. 1983. Subcellular distribution of signal recognition particle and 7SL RNA determined with polypeptide-specific antibodies and complementary DNA probe. J. Cell Biol. 97:1693–1699.
  • Weiner, A. M. 1980. An abundant cytoplasmic 7S RNA is complementary to the dominant interspersed middle repetitive DNA sequence family in the human genome. Cell 22:209–218.
  • Willard, C., H. T. Nguyen, and C. W. Schmid. 1987. Existence of at least three distinct Alu subfamilies. J. Mol. Evol. 26:180–186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.