11
Views
156
CrossRef citations to date
0
Altmetric
Research Article

Functional Characterization of the MKC1 Gene of Candida albicans, Which Encodes a Mitogen-Activated Protein Kinase Homolog Related to Cell Integrity

, , &
Pages 2197-2206 | Received 16 Aug 1994, Accepted 19 Jan 1995, Published online: 30 Mar 2023

REFERENCES

  • Ammerer, G. 1994. Sex, stress and integrity: the importance of MAP kinases in yeast. Curr. Opin. Genet. Dev. 4:90–95.
  • Ausubel, F. M., R. E. Kingston, R. Brent, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1993. Current protocols in molecular biology. Greene Publishing Associates and Wiley Interscience, New York.
  • Beach, D. H., L. Rodgers, and J. Gould. 1985. RAN11 controls the transition from mitotic division to meiosis in fission yeast. Curr. Genet. 10:297–311.
  • Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513–1515.
  • Birse, C. E., M. Y. Irwin, W. A. Fonzi, and P. S. Sypherd. 1993. Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect. Immun. 61:3648–3655.
  • Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and M. C. Gustin. 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.
  • Broek, D., T. Toda, T. Michaeli, L. Levin, C. Birchmeier, M. Zoller, S. Powers, and M. Wigler. 1987. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799.
  • Cameron, S., L. Levin, M. Zoller, and M. Wigler. 1988. cAMP-independent control of sporulation, glycogen metabolism and heat shock resistance in S. cerevisiae. Cell 53:555–566.
  • Cannon, R. D., H. F. Jenkinson, and M. G. Shepherd. 1990. Isolation and nucleotide sequence of an autonomously replicating sequence (ARS) element functional in Candida albicans and Saccharomyces cerevisiae. Mol. Gen. Genet. 221:210–218.
  • Cannon, R. D., H. F. Jenkinson, and M. G. Shepherd. 1992. Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae. Mol. Gen. Genet. 235:453–457.
  • Chang, F., and I. Herskowitz. 1992. Phosphorylation of FAR1 in response to α-factor: a possible requirement for cell-cycle arrest. Mol. Biol. Cell 3:445–450.
  • Costigan, C., S. Gehrung, and M. Snyder. 1992. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol. Cell. Biol. 12:1162–1178.
  • Costigan, C., D. Kolodrubetz, and M. Snyder. 1994. NHP6A and NHP6B, which encode HMG1-like proteins, are candidates for downstream components of the yeast SLT2 mitogen-activated protein kinase pathway. Mol. Cell. Biol. 14:2391–2403.
  • de la Fuente, J. M., A. Alvarez, C. Nombela, and M. Sánchez. 1992. Flow cytometric analysis of Saccharomyces cerevisiae autolytic mutants and proto-plasts. Yeast 8:39–45.
  • Dohmen, R. J., A. W. M. Strasser, C. B. Höner, and C. P. Hollenberg. 1991. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692.
  • Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16:6127–6143.
  • Egel, R., O. Nielsen, and D. Weilguny. 1990. Sexual differentiation in fission yeast. Trends Genet. 11:369–373.
  • Elion, E. A., P. L. Grisafi, and G. R. Fink. 1990. FUS3 encodes a cdc21/ CDC28-related kinase required for the transition from mitosis into conjugation. Cell 60:649–664.
  • Errede, B., A. Gartner, Z. Zhou, K. Nasmyth, and G. Ammerer. 1993. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature (London) 362:261–264.
  • Errede, B., and D. E. Levin. 1993. A conserved kinase cascade for MAP kinase activation in yeast. Curr. Opin. Cell Biol. 5:254–260.
  • Fonzi, W. A., and M. Y. Irwin. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728.
  • Gartner, A., K. Nasmyth, and G. Ammerer. 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6:1280–1292.
  • Gil, C., R. Pomés, and C. Nombela. 1988. A complementation analysis by parasexual recombination of Candida albicans morphological mutants. J. Gen. Microbiol. 134:1587–1595.
  • Gillum, A. M., E. Y. H. Tsay, and D. R. Kirsch. 1984. Isolation of the Candida albicans gene for orotidine-59-phosphate decarboxylase by comple-mentation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198:179–182.
  • Gow, N. A., P. W. Robbins, J. W. Lester, A. J. Brown, W. A. Fonzi, T. Chapman, and O. S. Kinsman. 1994. A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc. Natl. Acad. Sci. USA 91:6216–6220.
  • Hanahan, D. 1988. Techniques for transformation of E. coli, p. 109–135. In D. M. Glover (ed.), DNA cloning. IRL Press, Oxford.
  • Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.
  • Herreros, E., M. I. Garcia-Saez, C. Nombela, and M. Sanchez. 1992. A reorganized Candida albicans DNA sequence promoting homologous non-integrative genetic transformation. Mol. Microbiol. 6:3567–3574.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Irie, K., M. Takase, K. S. Lee, D. E. Levin, H. Araki, K. Matsumoto, and Y. Oshima. 1993. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13:3076–3083.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kawaguchi, Y., H. Honda, J. Taniguchi-Morimura, and S. Iwasaki. 1989. The codon CUG is read as serine in an asporogenic yeast Candida cylindra-cea. Nature (London) 341:164–166.
  • Kosako, H., E. Nishida, and Y. Gotoh. 1993. cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates. EMBO J. 12:787–794.
  • Krisak, L., R. Strich, R. S. Winters, J. P. Hall, M. J. Mallory, D. Kreitzer, R. S. Tuan, and E. Winter. 1994. SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev. 8:2151–2161.
  • Kurtz, M. B., M. W. Cortelyou, S. M. Miller, M. Lai, and D. R. Kirsch. 1987. Development of autonomously replicating plasmids for Candida albicans. Mol. Cell. Biol. 7:209–217.
  • Kurtz, M. B., R. Kelly, and D. R. Kirsch. 1990. Molecular genetics of Candida albicans, p. 21–74. In D. R. Kirsch, R. Kelly, and M. B. Kurtz (ed.), The genetics of Candida. CRC Press, Boca Raton, Fla.
  • Lee, K. S., L. K. Hines, and D. E. Levin. 1993. A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol. Cell. Biol. 13:5843–5853.
  • Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Mat-sumoto, and D. E. Levin. 1993. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol. Cell. Biol. 13:3067–3075.
  • Lee, K. S., and D. E. Levin. 1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12:172–182.
  • Levin, D. E., F. O. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner. 1990. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62:213–224.
  • Marsh, L., A. M. Neiman, and I. Herskowitz. 1991. Signal transduction during pheromone response in yeast. Annu. Rev. Cell Biol. 7:699–728.
  • Marshall, C. J. 1994. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 4:82–89.
  • Martín, H., J. Arroyo, M. Sánchez, M. Molina, and C. Nombela. 1993. Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 378C. Mol. Gen. Genet. 241:177–184.
  • Martín, H., M. C. Castellanos, R. Cenamor, M. Sánchez, M. Molina, and C. Nombela. 1994. Unpublished data.
  • Mazzoni, C., P. Zarzov, A. Rambourg, and C. Mann. 1993. The SLT2(MPK1) MAP kinase homolog is involved in polarized cell growth in Saccharomyces cerevisiae. J. Cell Biol. 123:1821–1833.
  • Neiman, A. M., B. J. Stevenson, H. Xu, G. F. J. Sprague, I. Herskowitz, M. Wigler, and S. Marcus. 1993. Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccha-romyces cerevisiae suggests a conserved signal transduction module in eu-karyotic organisms. Mol. Biol. Cell 4:107–120.
  • Nishida, E., and Y. Gotoh. 1993. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends. Biochem. Sci. 18:128–131.
  • Nombela, C., J. Pla, E. Herreros, C. Gil, M. Molina, and M. Sánchez. 1992. Novel targets for antifungal drugs, p. 117–129. In J. E. Bennett, R. J. Hay, and P. K. Peterson (ed.), New strategies in fungal disease. Churchill Living-stone, London.
  • Odds, F. C. 1988. Candida and candidosis. Baillière Tindall, London.
  • Paravicini, G., M. Cooper, L. Friedli, D. J. Smith, J.-L. Carpentier, L. S. Klig, and M. A. Payton. 1992. The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol. Cell. Biol. 12:4896–4905.
  • Parsons, W. J., V. Ramkumar, and G. L. Stiles. 1988. Isobutyl-methylxan-thine stimulates adenylate cyclase by blocking the inhibitory regulatory protein Gi. Mol. Pharmacol. 34:37–41.
  • Payton, M. 1994. Personal communication.
  • Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448.
  • Pla, J., R. M. Pérez-Díaz, F. Navarro-García, and C. Nombela. 1994. Unpublished data.
  • Polaina, J., and A. C. Adam. 1991. A fast procedure for yeast DNA purifi-cation. Nucleic Acids Res. 19:5443.
  • Posada, J., and J. A. Cooper. 1992. Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science 255:212–215.
  • Posas, F., A. Casamayor, and J. Ariño. 1993. The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Lett. 318:282–286.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Santos, M. A. S., G. Keith, and M. F. Tuite. 1993. Non-standard translational events in Candida albicans mediated by an unusual seryl-tRNA with 59-CAG-39 (leucine) anticodon. EMBO J. 12:607–616.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shimizu, J., K. Yoda, and M. Yamasaki. 1994. The hypo-osmolarity-sensitive phenotype of the Saccharomyces cerevisiae hpo2 mutant is due to a mutation in PKC1, which regulates expression of β-glucanase. Mol. Gen. Genet. 242: 641–648.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sprague, G. F., Jr. 1991. Signal transduction in yeast mating: receptors, transcription factors, and the kinase connection. Trends Genet. 7:393–398.
  • Toda, T., M. Shimanuki, and M. Yanagida. 1991. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK1/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Dev. 5:60–73.
  • Torres, L., H. Martín, M. I. García-Sáez, J. Arroyo, M. Molina, M. Sánchez, and C. Nombela. 1991. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol. Microbiol. 5:2845–2854.
  • Tuite, M. F. 1992. Antifungal drug development: the identification of new targets. Trends Biotechnol. 10:235–239.
  • Whiteway, M., D. Dignard, and D. Y. Thomas. 1992. Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest. Proc. Natl. Acad. Sci. USA 89:9410–9414.
  • Yokogawa, T., T. Suzuki, T. Ueda, M. Mori, T. Ohama, Y. Kuchino, S. Yoshinari, I. Motoki, K. Nishikawa, and S. Osawa. 1992. Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindra-cea: evolutionary implications. Proc. Natl. Acad. Sci. USA 89:7408–7411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.