2
Views
60
CrossRef citations to date
0
Altmetric
Research Article

p53 Stimulates Transcription from the Human Transforming Growth Factor α Promoter: a Potential Growth-Stimulatory Role for p53

, &
Pages 4694-4701 | Received 11 May 1995, Accepted 12 Jun 1995, Published online: 30 Mar 2023

REFERENCES

  • Baker, S. J., S. Morkowitz, E. R. Fearon, J. K. Willson, and B. Vogelstein. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915.
  • Blasband, A. J., K. T. Rogers, X. Chen, J. C. Azizkhan, and D. C. Lee. 1990. Characterization of the rat transforming growth factor alpha gene and identification of promoter sequences. Mol. Cell. Biol. 10:2111–2121.
  • Chen, X., G. Farmer, H. Zhu, R. Prywes, and C. Prives. 1993. Cooperative DNA binding of p53 with TFIID TBP: a possible mechanism for transcriptional activation. Genes Dev. 7:1837–1849.
  • Cho, T., S. Gorina, P. D. Jeffrey, and N. P. Pavletich. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Clarke, A. R., C. A. Purdie, D. J. Harrison, R. G. Morris, C. C. Bird, M. L. Hooper, and A. H. Wyllie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature (London) 362:849–852.
  • Colgan, J., and J. L. Manley. 1992. TFIID can be rate limiting in vivo for TATA-containing, but not TATA-lacking, RNA polymerase II promoters. Genes Dev. 6:304–315.
  • Crespo, P., N. Xu, W. F. Simonds, and J. S. Gutkind. 1994. Ras-dependent activation of MAP kinase pathway mediated by G-protein beta gamma subunits. Nature (London) 369:418–420.
  • Dérijard, B., M. Hibi, I.-H. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and R. J. Davis. 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037.
  • Devary, Y., R. A. Gottlieb, T. Smeal, and M. Karin. 1992. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 71:1081–1091.
  • Dulić, V., W. K. Kaufmann, S. J. Wilson, T. E. Tlsty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023.
  • El-Deiry, W. S., S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and B. Vogelstein. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45–49.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Ellem, K. A., M. Cullinan, K. C. Baumann, and A. Dunstan. 1991. UVR induction of TGF alpha: a possible autocrine mechanism for the epidermal melanocytic response and for promotion of epidermal carcinogenesis. Carcinogenesis 9:797–801.
  • Funk, W. D., D. T. Pak, R. H. Karas, W. E. Wright, and J. W. Shay. 1992. A transcriptionally active DNA-binding site for human p53 protein complexes. Mol. Cell. Biol. 12:2866–2871.
  • Hahn, S., S. Buratowski, P. A. Sharp, and L. Guarente. 1989. Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc. Natl. Acad. Sci. USA 86:5718–5722.
  • Halazonetis, T. D., L. J. Davis, and A. N. Kandil. 1993. Wild-type p53 adopts a ‘mutant’-like conformation when bound to DNA. EMBO J. 12:1021–1028.
  • Hall, P. A., P. H. McKee, H. D. Menage, R. Dover, and D. P. Lane. 1993. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 8:203–207.
  • Jakobovits, E. B., U. Schlokat, J. L. Vannice, R. Derynck, and A. D. Levinson. 1988. The human transforming growth factor alpha promoter directs transcription initiation from a single site in the absence of a TATA sequence. Mol. Cell. Biol. 8:5549–5554.
  • James, L. C., A. M. Moore, L. A. Wheeler, G. M. Murphy, P. M. Dowd, and M. W. Greaves. 1991. Transforming growth factor alpha: in vivo release by normal human skin following UV irradiation and abrasion. Skin Pharmacol. 4:61–64.
  • Kastan, M. B., Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and J. Fornace. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telan-giectasia. Cell 71:587–597.
  • Kaufmann, J., and S. T. Smale. 1994. Direct recognition of initiator elements by a component of the transcription factor IID complex. Genes Dev. 8:821–829.
  • Korneluk, R. G., D. J. Mahuran, K. Neote, M. H. Klavins, B. F. O'Dowd, M. Tropak, H. F. Willard, M. J. Anderson, J. A. Lowden, and R. A. Gravel. 1986. Isolation of cDNA clones coding for the alpha-subunit of human beta-hexosaminidase. Extensive homology between the alpha- and beta-subunits and studies on Tay-Sachs disease. J. Biol. Chem. 261:8407–8413.
  • Kudlow, J. E., A. W. Leung, M. S. Kobrin, A. J. Paterson, and S. L. Asa. 1989. Transforming growth factor-alpha in the mammalian brain. Immunohisto-chemical detection in neurons and characterization of its mRNA. J. Biol. Chem. 264:3880–3883.
  • Liu, X., C. W. Miller, P. H. Koeffler, and A. J. Berk. 1993. The p53 activation domain binds the TATA box-binding polypeptide in Holo-TFIID, and a neighboring p53 domain inhibits transcription. Mol. Cell. Biol. 13:3291–3300.
  • Lowe, S. W., E. M. Schmitt, S. W. Smith, B. A. Osborne, and T. Jacks. 1993. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature (London) 362:847–849.
  • Mack, D. H., J. Vartikar, J. M. Pipas, and L. A. Laimins. 1993. Specific repression of TATA-mediated but not initiator-mediated transcription by wild-type p53. Nature (London) 363:281–283.
  • Martin, D. W., R. M. Munoz, M. A. Subler, and S. Deb. 1993. p53 binds to the TATA-binding protein-TATA complex. J. Biol. Chem. 268:13062–13067.
  • Mercer, W. E., M. T. Shields, M. Amin, G. J. Sauve, E. Appella, J. W. Romano, and S. J. Ullrich. 1990. Negative growth regulation in a glioblas-toma tumor cell line that conditionally expresses human wild-type p53. Proc. Natl. Acad. Sci. USA 87:6166–6170.
  • Murphy, G. M., D. G. Quinn, R. D. Camp, J. L. Hawk, and M. W. Greaves. 1991. In-vivo studies of the action spectrum and time course for release of transforming growth factor-alpha by ultraviolet irradiation in man. Br. J. Dermatol. 125:566–568.
  • Nelson, W. G., and M. B. Kastan. 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14:1815–1823.
  • Nigro, J. M., S. J. Baker, A. C. Preisinger, J. M. Jessup, R. Hostetter, K. Cleary, S. H. Binger, N. Davidson, S. Baylin, P. Devilee, T. Glover, F. S. Collins, A. Wetson, R. Modali, C. C. Harris, and B. Vogelstein. 1989. Mutations in the p53 gene occur in diverse human tumour types. Nature (London) 342:705–708.
  • Peterson, M. G., N. Tanese, B. F. Pugh, and R. Tjian. 1990. Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248:1625–1630.
  • Pietenpol, J. A., T. Tokino, S. Thiagalingam, W. S. El-Deiry, K. W. Kinzler, and B. Vogelstein. 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91:1998–2002.
  • Purnell, B. A., P. A. Emanuel, and D. S. Gilmour. 1994. TFIID sequence recognition of the initiator and sequences farther downstream in Drosophila class II genes. Genes Dev. 8:830–842.
  • Radler-Pohl, A., C. Sachsenmaier, S. Gebel, H. P. Auer, J. T. Bruder, U. Rapp, P. Angel, H. J. Rahmsdorf, and P. Herrlich. 1993. UV-induced activation of AP-1 involves obligatory extranuclear steps including Raf-1 kinase. EMBO J. 12:1005–1012.
  • Raja, R. H., A. J. Paterson, T. H. Shin, and J. E. Kudlow. 1991. Transcriptional regulation of the human transforming growth factor-alpha gene. Mol. Endocrinol. 5:514–520.
  • Sachsenmaier, C., A. Radler-Pohl, R. Zinck, A. Nordheim, P. Herrlich, and H. J. Rahmsdorf. 1994. Involvement of growth factor receptors in the mammalian UVC response. Cell 78:963–972.
  • Schreiber, E., P. Matthias, M. M. Müller, and W. Schaffner. 1989. Rapid detection of octamer binding proteins with ‘mini-extracts’, prepared from a small number of cells. Nucleic Acids Res. 17:6419–6423.
  • Seto, E., A. Usheva, G. P. Zambetti, J. Momand, N. Horikoshi, R. Weinmann, A. J. Levine, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89:12028–12032.
  • Shen, Y., and T. Shenk. 1994. Relief of p53-mediated transcriptional repression by the adenovirus E1B 19-kDa protein or the cellular Bcl-2 protein. Proc. Natl. Acad. Sci. USA 91:8940–8944.
  • Shin, T. H., and J. E. Kudlow. 1994. Identification and characterization of the human transforming growth factor-alpha initiator. Mol. Endocrinol. 8:704–712.
  • Shin, T. H., A. J. Paterson, J. H. Grant III, A. A. Meluch, and J. E. Kudlow. 1992. 5-Azacytidine treatment of HA-A melanoma cells induces Sp1 activity and concomitant transforming growth factor alpha expression. Mol. Cell. Biol. 12:3998–4006.
  • Truant, R., H. Xiao, C. J. Ingles, and J. Greenblatt. 1992. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268:2284–2287.
  • Unger, T., J. A. Mirtz, M. Scheffner, C. L. Yee, and P. M. Howley. 1993. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol. Cell. Biol. 13:5186–5194.
  • Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. S. A. Kimchi, and M. Oren. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature (London) 352:345–347.
  • Zambetti, G. P., J. Bargoneti, K. Walker, C. Prives, and A. J. Levine. 1992. Wild-type p53 mediates positive regulation of gene expression through a specific DNA sequence element. Genes Dev. 6:1143–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.