6
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Negative Regulation of G1 and G2 by S-Phase Cyclins of Saccharomyces cerevisiae

, &
Pages 5030-5042 | Received 04 Apr 1995, Accepted 09 Jun 1995, Published online: 30 Mar 2023

REFERENCES

  • Amon, A., S. Irniger, and K. Nasmyth. 1994. Closing the cell cycle circle: G2 cyclin proteolysis initiated at mitosis persists until activation of G1 cyclins in the next cell cycle. Cell 77:1037–1050.
  • Amon, A., M. Tyers, B. Futcher, and K. Nasmyth. 1993. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993–1007.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1987. Current protocols in molecular biology. Wiley Interscience/Greene, New York.
  • Barker, D. G., J. H. M. White, and L. H. Johnston. 1985. The nucleotide sequence of the DNA ligase gene (CDC9) from Saccharomyces cerevisiae: a gene which is cell cycle regulated and induced in response to DNA damage. Nucleic Acids Res. 13:8323–8337.
  • Brewer, B. J., E. Chlebowicz-Sledziewska, and W. L. Fangman. 1984. Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2529–2531.
  • Bueno, A., and P. Russell. 1992. Dual functions of CDC6: a yeast protein required for DNA replication also inhibits nuclear division. EMBO J. 11: 2167–2176.
  • Cross, F. R. 1988. DAF1, a mutant gene affecting size control, pheromone arrest and cell cycle kinetics of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4675–4684.
  • Cross, F. R., and A. H. Tinkelenberg. 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875–883.
  • Dirick, L., and K. Nasmyth. 1991. Positive feedback in the activation of G1 cyclins in yeast. Nature (London) 351:754–757.
  • Elford, H. L. 1968. Effect of hydroxyurea on ribonucleotide reductase. Biochem. Biophys. Res. Commun. 33:129–135.
  • Epstein, C. B., and F. R. Cross. 1992. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6:1695–1706.
  • Ghiara, J. B., H. E. Richardson, K. Sugimoto, M. Henze, D. J. Lew, C. Wittenberg, and S. I. Reed. 1991. A cyclin B homolog in S. cerevisiae: chronic activation of the Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65:163–174.
  • Glotzer, M., A. Murray, and M. Kirschner. 1991. Cyclin is degraded by the ubiquitin pathway. Nature (London) 349:132–138.
  • Grandin, N., and S. I. Reed. 1993. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13:2113–2115.
  • Hadwiger, J. A., C. Wittenberg, M. A. de Barros Lopes, H. E. Richardson, and S. I. Reed. 1989. A family of cyclin homologs that control G1 phase in yeast. Proc. Natl. Acad. Sci. USA 86:6255–6259.
  • Hartwell, L. H. 1976. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J. Mol. Biol. 104:803.
  • Hartwell, L. H., J. Culotti, J. R. Pringle, and B. J. Reid. 1974. Genetic control of the cell division cycle in yeast. Science 183:46–51.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Hunt, T. 1989. Maturation promoting factor, cyclin and the control of M-phase. Curr. Opin. Cell Biol. 1:268–274.
  • Hutter, K. J., and H. E. Eipel. 1979. Microbial DNA determinations by flow cytometry. J. Gen. Microbiol. 113:369–375.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Johnston, G. C., J. R. Pringle, and L. H. Hartwell. 1977. Coordination of growth with cell division in the yeast S. cerevisiae. Exp. Cell Res. 105:75–98.
  • Johnston, L. H. 1992. Cell cycle control of gene expression in yeast. Trends Cell Biol. 2:353–357.
  • Johnston, L. H., and N. F. Lowndes. 1992. Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Res. 20:2403–2410.
  • Kelly, T. J., G. S. Martin, S. L. Forsburg, R. J. Stephen, A. Russo, and P. Nurse. 1993. The fission yeast cdc181 gene product couples S phase to START and mitosis. Cell 74:371–382.
  • Kuhne, C., and P. Linder. 1993. A new pair of B-type cyclins from Saccha-romyces cerevisiae that function early in the cell cycle. EMBO J. 12:3437–3447.
  • Lew, D. J., V. Dulic, and S. I. Reed. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66:1197–1206.
  • Lew, D. J., N. J. Marini, and S. I. Reed. 1992. Different G1 cyclins control the timing of cell cycle commitment in mother and daughter cells in the budding yeast Saccharomyces cerevisiae. Cell 69:317–327.
  • Lew, D. J., and S. I. Reed. 1992. A proliferation of cyclins. Trends Cell Biol. 2:77–81.
  • Lew, D. J., and S. I. Reed. 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120:1305–1320.
  • Lisziewicz, J., A. Godany, D. V. Agoston, and H. Kuntzel. 1988. Cloning and characterization of the Saccharomyces cerevisiae CDC6 gene. Nucleic Acids Res. 16:11507–11520.
  • McIntosh, E. M., M. H. Gadsden, and R. H. Haynes. 1986. Transcription of genes encoding enzymes involved in DNA synthesis during the cell cycle of Saccharomyces cerevisiae. Mol. Gen. Genet. 204:363–366.
  • Mendenhall, M. D., C. A. Jones, and S. I. Reed. 1987. Dual regulation of the yeast CDC28-p40 protein kinase complex: cell cycle, pheromone, and nutrient limitation effects. Cell 50:927–935.
  • Merrill, G. F., B. A. Morgan, N. F. Lowndes, and L. H. Johnston. 1992. DNA synthesis control in yeast: an evolutionarily conserved mechanism for regulating DNA synthesis genes? Bioessays 14:823–830.
  • Mitchison, J. M. 1971. The biology of the cell cycle. Cambridge University Press, Cambridge.
  • Mitchison, J. M., J. Creanor, and B. Novack. 1991. Coordination of growth and division during the cell cycle of fission yeast. Cold Spring Harbor Symp. Quant. Biol. 51:557–565.
  • Moore, S. 1988. Kinetic evidence for a critical rate of protein synthesis in the Saccharomyces cerevisiae cell cycle. J. Biol. Chem. 263:9674–9681.
  • Nash, R., G. Tokiwa, S. Anand, K. Erickson, and A. B. Futcher. 1988. The WHI11 gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 7:4335–4346.
  • Nasmyth, K. 1993. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 2:421–423.
  • Ng, R., and J. Abelson. 1980. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77:3912–3916.
  • O'Farrell, P., and P. Leopold. 1991. A consensus of cyclin sequences reveals homology with the ras oncogene. Cold Spring Harbor Symp. Quant. Biol. 56:83–92.
  • Peterson, T. A., L. Prakash, S. Prakash, M. A. Osley, and S. I. Reed. 1985. Regulation of CDC9, the Saccharomyces cerevisiae gene that encodes DNA ligase. Mol. Cell. Biol. 5:226–235.
  • Pringle, J. P., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae cell cycle, p. 97–142. In J. D. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Reed, S. I. 1992. The role of p34 kinases in the G1 to S-phase transition. Annu. Rev. Cell Biol. 8:529–561.
  • Richardson, H., D. J. Lew, M. Henze, K. Sugimoto, and S. I. Reed. 1992. Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev. 6:2021–2034.
  • Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Schwob, E., T. Bohm, M. D. Mendenhall, and K. Nasmyth. 1994. The B-type cyclin dependent kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244.
  • Schwob, E., and K. Nasmyth. 1993. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7:1160–1175.
  • Sherman, F., G. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designated for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Slater, M. L. 1973. Effect of reversible inhibition of deoxyribonucleic acid synthesis on the yeast cell cycle. J. Bacteriol. 113:263–270.
  • Stueland, C. S., D. J. Lew, M. J. Cismowski, and S. I. Reed. 1992. Checkpoint controls in Saccharomyces cerevisiae act downstream of p34CDC28 activation. Mol. Cell. Biol. 13:3744–3755.
  • Sudbery, P. E., A. R. Goodey, and B. L. A. Carter. 1980. Genes which control cell proliferation in the yeast Saccharomyces cerevisiae. Nature (London) 288:401–404.
  • Surana, U., H. Robitsch, C. Price, T. Shuster, I. Fitch, A. B. Futcher, and K. Nasmyth. 1991. The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145–461.
  • Wittenberg, C., and S. I. Reed. 1988. Control of the yeast cell cycle is associated with assembly/disassembly of the Cdc28 protein kinase complex. Cell 54:1061–1072.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed. 1990. G1-specific cyclins of Saccharomyces cerevisiae: cell cycle periodicity, regulation by mating pheromone and association with the p34CDC28 protein kinase. Cell 62:225–237.
  • Yaffe, M. 1991. Analysis of mitochondrial function and assembly. Methods Enzymol. 194:627–643.
  • Zhou, C., and A. Y. Jong. 1990. CDC6 mRNA fluctuates periodically in the yeast cell cycle. J. Biol. Chem. 265:19904–19909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.