7
Views
93
CrossRef citations to date
0
Altmetric
Research Article

A Novel Retinoid X Receptor-Independent Thyroid Hormone Response Element Is Present in the Human Type 1 Deiodinase Gene

, , , &
Pages 5100-5112 | Received 24 Apr 1995, Accepted 23 Jun 1995, Published online: 30 Mar 2023

REFERENCES

  • Abrams, G. M., and P. R. Larsen. 1973. Triiodothyronine and thyroxine in the serum and thyroid glands of iodine-deficient rats. J. Clin. Invest. 52: 2522–2531.
  • Andersson, M. L., K. Nordstrom, S. Demczuck, M. Harbers, and B. Vennstrom. 1992. Thyroid hormone alters the DNA binding properties of chicken thyroid hormone receptors α and β. Nucleic Acids Res. 20:4803–4810.
  • Aruffo, A., and B. Seed. 1987. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. Natl. Acad. Sci. USA 84: 8573–8577.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Wiley and Sons, New York.
  • Berrodin, T. J., M. S. Marks, K. Ozato, E. Linney, and M. A. Lazar. 1992. Heterodimerization among thyroid hormone receptor, retinoic acid receptor, retinoid X receptor, chicken ovalbumin upstream promoter transcription factor, and an endogenous liver protein. Mol. Endocrinol. 6:1468–1478.
  • Berry, M. J., L. Banu, and P. R. Larsen. 1991. Type I iodothyronine deio-dinase is a selenocysteine-containing enzyme. Nature (London) 349:438–440.
  • Berry, M. J., A. L. Kates, and P. R. Larsen. 1990. Thyroid hormone regulates type I deiodinase messenger RNA in rat liver. Mol. Endocrinol. 4:743–748.
  • Berry, M. J., and P. R. Larsen. 1992. The role of selenium in thyroid hormone action. Endocr. Rev. 13:207–219.
  • Berry, M. J., and P. R. Larsen. 1994. Selenocysteine and the structure, function, and regulation of iodothyronine deiodination: update 1994. Endo-crinol. Rev. 3:265–269.
  • Brent, G. A., M. K. Dunn, J. W. Harney, T. Gulick, P. R. Larsen, and D. D. Moore. 1989. Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. New Biol. 1:329–336.
  • Brent, G. A., P. R. Larsen, J. W. Harney, R. J. Koenig, and D. D. Moore. 1989. Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co-transfected β type thyroid hormone receptor. J. Biol. Chem. 264:178–182.
  • Brent, G. A., G. R. Williams, J. W. Harney, B. M. Forman, H. H. Samuels, D. D. Moore, and P. R. Larsen. 1991. Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,39-triiodothy-ronine. Mol. Endocrinol. 5:542–548.
  • Brent, G. A., G. R. Williams, J. W. Harney, B. M. Forman, H. H. Samuels, D. D. Moore, and P. R. Larsen. 1992. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements. Mol. Endocrinol. 6:502–514.
  • Bugge, T. H., J. Pohl, O. Lonnoy, and H. G. Stunnenberg. 1992. RXRα, a promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J. 11:1409–1418.
  • Carlberg, C. 1993. RXR-independent action of the receptors for thyroid hormone, retinoic acid and vitamin D on inverted palindromes. Biochem. Biophys. Res. Commun. 195:1345–1353.
  • Contempre, B., J. E. Dumont, N. Bebe, C. H. Thilly, A. T. Diplock, and J. Vanderpas. 1991. Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area: the possible danger of indiscriminate supplementation of iodine-deficient subjects with selenium. J. Clin. Endocrinol. Metab. 73:213–215.
  • Damm, K., C. C. Thompson, and R. M. Evans. 1989. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature (London) 339:593–597.
  • Desai-Yajnik, V., and H. H. Samuels. 1993. The NF-κB and Sp1 motifs of the human immunodeficiency virus type 1 long terminal repeat function as novel thyroid hormone response elements. Mol. Cell. Biol. 13:5057–5069.
  • Forman, B. M., J. Cassanova, B. M. Raaka, J. Ghysdael, and H. H. Samuels. 1992. Half-site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol. Endocrinol. 6:429–442.
  • Forman, B. M., and H. H. Samuels. 1990. Interactions among a subfamily of nuclear hormone receptors: the regulatory zipper model. Mol. Endocrinol. 4:1293–1301.
  • Glass, C. K. 1994. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocrinol. Rev. 15:391–407.
  • Graupner, G., K. N. Wills, M. Tzukerman, X. Zhang, and M. Pfahl. 1989. Dual regulatory role for thyroid-hormone receptors allows control of reti-noic-acid receptor activity. Nature (London) 340:653–656.
  • Hermann, T., B. Hoffmann, X. Zhang, P. Tran, and M. Pfahl. 1992. Het-erodimeric receptor complexes determine 3,5,39-triiodothyronine and retin-oid signaling specificities. Mol. Endocrinol. 6:1153–1162.
  • Higuchi, R. 1990. Recombinant PCR, p. 177–183. In M. A. Innis, D. H. Gelf, and J. J. Sninsky, and T. J. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, San Diego, Calif.
  • Hsu, J.-H., A. M. Zavacki, J. W. Harney, and G. A. Brent. 1995. Retinoid-X-receptor (RXR) differentially augments thyroid hormone response in cell lines as a function of the response element and endogenous RXR content. Endocrinology 136:421–430.
  • Ikeda, M., M. Rhee, and W. W. Chin. 1994. Thyroid hormone receptor monomer, homodimer and heterodimer (with retinoid-X receptor) contact different nucleotide sequences in thyroid hormone response elements. Endocrinology 135:1628–1638.
  • Javahery, R., A. Khachi, K. Lo, B. Zenzie-Gregory, and S. T. Smale. 1994. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell. Biol. 14:116–127.
  • Katz, R. W., and R. J. Koenig. 1993. Nonbiased identification of DNA sequences that bind thyroid hormone receptor α1 with high affinity. J. Biol. Chem. 268:19392–19397.
  • Katz, R. W., and R. J. Koenig. 1994. Specificity and mechanism of thyroid hormone induction from an octamer response element. J. Biol. Chem. 269: 18915–18920.
  • Kim, H.-S., D. E. Crone, C. N. Sprung, J. B. Tillman, W. R. Force, M. D. Crew, P. L. Mote, and S. R. Spindler. 1992. Positive and negative thyroid hormone response elements are composed of strong and weak half-sites 10 nucleotides in length. Mol. Endocrinol. 6:1489–1501.
  • Kliewer, S. A., K. Umesono, D. J. Mangelsdorf, and R. M. Evans. 1992. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone, and vitamin D3 signaling. Nature (London) 355:446–449.
  • Knowless, B. B., C. C. Howe, and D. P. Aden. 1980. Human hepatocellular carcinoma cell lines secrete major plasma proteins and hepatitis B surface antigen. Science 209:497–499.
  • Koenig, R. J., G. A. Brent, R. L. Warne, P. R. Larsen, and D. D. Moore. 1987. Thyroid hormone receptor binds to a site in the rat growth promoter required for induction by thyroid hormone. Proc. Natl. Acad. Sci. USA 84: 5670–5674.
  • Koenig, R. J., R. L. Warne, G. A. Brent, J. W. Harney, P. R. Larsen, and D. D. Moore. 1988. Isolation of a cDNA clone encoding a biologically active thyroid hormone receptor. Proc. Natl. Acad. Sci. USA 85:5031–5035.
  • Larsen, P. R., and R. D. Frumess. 1977. Comparison of the biological effects of thyroxine and triiodothyronine in the rat. Endocrinology 100:980–988.
  • Larsen, P. R., J. W. Harney, and D. D. Moore. 1986. Sequences required for cell-type-specific thyroid hormone regulation of rat growth hormone promoter activity. J. Biol. Chem. 261:14373–14376.
  • Lazar, M. A. 1993. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocrinol. Rev. 14:270–279.
  • Lazar, M. A., T. J. Berrodin, and H. P. Harding. 1991. Differential DNA binding by monomeric, homodimeric, and potentially heterodimeric forms of the thyroid hormone receptor. Mol. Cell. Biol. 11:5005–5015.
  • Lee, J. W., D. D. Moore, and R. A. Heyman. 1994. A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol. Endocrinol. 8:1245–1252.
  • Leid, M., P. Kastner, R. Lyons, H. Nakshatri, M. Saunders, T. Zacharewski, J.-Y. Chen, A. Staub, J.-M. Garnier, S. Mader, and P. Chambon. 1992. Purification, cloning, and RXR identity of the HeLa cell factor which RAR or TR heterodimerizes to bind target sequences efficiently. Cell 68:377–395.
  • Maia, A. L., M. J. Berry, R. Sabbag, J. W. Harney, and P. R. Larsen. Structural functional differences in the Dio1 gene in mice with inherited type 1 deiodinase deficiency. Mol. Endocrinol., in press.
  • Maia, A. L., J. W. Harney, and P. R. Larsen. 1995. Pituitary cells respond to thyroid hormone by discrete, gene-specific pathways. Endocrinology 136: 1488–1494.
  • Mandel, S. J., M. J. Berry, J. D. Kieffer, J. W. Harney, R. L. Warne, and P. R. Larsen. 1992. Cloning and in vitro expression of the human selenoprotein, type I iodothyronine deiodinase. J. Clin. Endocrinol. Metab. 75:1133–1139.
  • Mangelsdorf, D. J., E. S. Ong, J. A. Dyck, and R. M. Evans. 1990. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature (London) 345:224–229.
  • Mangelsdorf, D. J., K. Umesono, S. A. Kliewer, U. Borgmeyer, E. S. Ong, and R. M. Evans. 1991. A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66:555–561.
  • Marks, M. S., P. L. Hallenbeck, T. Nagata, J. H. Segars, E. Appella, V. M. Nikodem, and K. Ozato. 1992. H-2RIIBP (RXRβ) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J. 11:1419–1435.
  • Menjo, M., Y. Murata, T. Fujii, Y. Nimura, and H. Seo. 1993. Effects of thyroid and glucocorticoid hormones on the level of messenger ribonucleic acid for iodothyronine type I 59-deiodinase in rat primary hepatocyte cultures grown as spheroids. Endocrinology 133:2984–2990.
  • Moreno, M., M. J. Berry, C. Horst, R. Thoma, F. Goglia, J. W. Harney, P. R. Larsen, and T. J. Visser. 1994. Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Lett. 344:143–146.
  • Naar, A. M., J. M. Boutin, S. M. Lipkin, V. C. Yu, J. M. Holloway, C. K. Glass, and M. G. Rosenfeld. 1991. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65:1267–1279.
  • Okamura, K., A. Taurog, and L. Krulich. 1981. Hypothyroidism in severely iodine-deficient rats. Endocrinology 109:464–468.
  • O'Mara, B. A., W. Dittrich, T. J. Lauterio, and D. L. St. Germain. 1993. Pretranslational regulation of type I 59-deiodinase by thyroid hormones and in fasted and diabetic rats. Endocrinology 133:1715–1723.
  • Oppenheimer, J. H., H. L. Schwartz, and M. I. Surks. 1972. Propylthiouracil inhibits the conversion of L-thyroxine to L-triiodothyronine: an explanation of the antithyroxine effect of propylthiouracil and evidence supporting the concept that triiodothyronine is the active thyroid hormone. J. Clin. Invest. 51:2493–2497.
  • Park, H.-Y., D. Davidson, B. M. Raaka, and H. H. Samuels. 1993. The herpes simplex virus thymidine kinase gene promoter contains a novel thyroid hormone response element. Mol. Endocrinol. 7:319–330.
  • Pazos-Moura, C. C., E. G. Moura, G. M. Egberto, M. L. Dorris, S. Rehnmark, L. Melendez, J. E. Silva, and A. Taurog. 1991. Effect of iodine defi-ciency and cold exposure on thyroxine 59-deiodinase activity in various rat tissues. Am. J. Physiol. 260:E175–E182.
  • Prost, E., R. J. Koenig, D. D. Moore, P. R. Larsen, and G. Whalen. 1988. Multiple sequences encoding potential thyroid hormone receptors isolated from mouse skeletal muscle cDNA libraries. Nucleic Acids Res. 16:6248.
  • Prost, E., and D. D. Moore. 1986. CAT vectors for analysis of eukaryotic promoters and enhancers. Gene 45:107–111.
  • Ribeiro, R. C. J., P. J. Kushner, J. W. Apriletti, B. L. West, and J. D. Baxter. 1992. Thyroid hormone alters in vitro DNA binding of monomers and dimers of thyroid hormone receptors. Mol. Endocrinol. 6:1142–1152.
  • Riesco, G., A. Taurog, P. R. Larsen, and L. Krulich. 1977. Acute and chronic responses to iodine deficiency in rats. Endocrinology 100:303–313.
  • Santos, A., A. Peres-Castillo, N. C. W. Wong, and J. H. Oppenheimer. 1987. Labile proteins are necessary for T3 induction of growth hormone mRNA in normal rat pituitary and rat pituitary tumor cells. J. Biol. Chem. 262:16880–16884.
  • Schrader, M., M. Becker-Andre, and C. Carlberg. 1994. Thyroid hormone receptor functions as monomeric ligand-induced transcription factor on oc-tameric half-sites. J. Biol. Chem. 269:6444–6449.
  • Schueler, P. A., H. L. Schwartz, K. A. Strait, C. N. Mariash, and J. H. Oppenheimer. 1990. Binding of 3,5,39-triiodothyronine (T3) and its analogs to the in vitro translational products of c-erbA protooncogenes: differences in the affinity of the α- and β-forms for the acetic acid analog and failure of the human testis and kidney α-2 products to bind T3. Mol. Endocrinol. 4:227–234.
  • Seed, B., and J.-Y. Sheen. 1988. A simple phase-extraction assay forchlor-amphenicol acetyltransferase activity. Gene 67:271–277.
  • Seelig, R., D. B. Jump, H. C. Towle, C. Liaw, C. N. Mariach, H. L. Schwartz, and J. H. Opennheimer. 1982. Paradoxical effects of cycloheximide on the ultra-rapid induction of two hepatic mRNA sequences by triiodothyronine (T3). Endocrinology 110:671–673.
  • Selden, R. F., K. B. Bowie, M. E. Rowe, H. M. Goodman, and D. D. Moore. 1986. Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol. Cell. Biol. 6:3173–3179.
  • Sugawara, A., P. M. Yen, D. S. Darling, and W. W. Chin. 1993. Characterization and tissue expression of multiple triiodothyronine receptor-auxillary proteins and their relationship to the retinoid-X-receptors. Endocrinology 133:965–971.
  • Toney, J. H., L. Wu, A. E. Summerfield, G. Sanyal, B. M. Forman, J. Zhu, and H. H. Samuels. 1993. Conformational changes in chicken thyroid hormone receptor α1 induced by binding to ligand or to DNA. Biochemistry 32:2–6.
  • Toyoda, N., M. Nishikawa, Y. Mori, A. Gondou, Y. Ogawa, T. Yonemoto, M. Yoshimura, H. Masaki, and M. Inada. 1992. Thyrotropin and triiodothyro-nine regulate iodothyronine 59-deiodinase messenger ribonucleic acid levels in FRTL-5 rat thyroid cells. Endocrinology 131:389–394.
  • Tsai, S. Y., M.-J. Tsai, and B. W. O'Malley. 1989. Cooperative binding of steroid hormone receptors contributes to transcriptional synergism at target enhancer elements. Cell 57:443–448.
  • Umesono, K., K. K. Murakami, C. C. Thompson, and R. M. Evans. 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266.
  • Wahlstrom, G. M., M. Sjoberg, M. Andersson, K. Nordstrom, and B. Vennstrom. 1992. Binding characteristics of the thyroid hormone receptor homo- and heterodimers to consensus AGGTCA repeat motifs. Mol. En-docrinol. 6:1013–1022.
  • Williams, G. R., and G. A. Brent. 1994. Thyroid hormone response elements, p. 217–239. In B. Weintraub (ed.), Molecular endocrinology: basic concepts and clinical correlations. Raven Press, New York.
  • Williams, G. R., J. W. Harney, B. M. Forman, H. H. Samuels, and G. A. Brent. 1991. Oligomeric binding of T3 receptor is required for maximal T3 response. J. Biol. Chem. 266:19636–19644.
  • Yen, P. M., J. H. Brubaker, J. W. Apriletti, J. D. Baxter, and W. W. Chin. 1994. Roles of 3,5,39-triidothyronine and deoxyribonucleic acid binding on thyroid hormone receptor complex formation. Endocrinology 134:1075–1081.
  • Yen, P. M., D. S. Darling, R. L. Carter, M. Forgione, P. K. Umeda, and W. W. Chin. 1992. Triiodothyronine (T3) decreases binding to DNA by T3-receptor homodimers but not receptor-auxiliary protein heterodimers. J. Biol. Chem. 267:3565–3568.
  • Yen, P. M., A. Sugawara, and W. W. Chin. 1992. Triiodothyronine (T3) differentially affects T3-receptor/retinoic acid receptor and T3-receptor/reti-noid X receptor heterodimer binding to DNA. J. Biol. Chem. 267:23248–23252.
  • Yu, V. C., C. Delsert, B. Anderson, J. M. Holloway, O. V. Devary, A. M. Naar, S. Y. Kim, J.-M. Boutin, C. K. Glass, and M. G. Rosenfeld. 1991. RXRβ: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67:1251–1266.
  • Zhang, X.-K., B. Hoffmann, P. B.-V. Tran, G. Graupner, and M. Pfahl. 1992. Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptors. Nature (London) 355:441–446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.