10
Views
66
CrossRef citations to date
0
Altmetric
Research Article

Identification of Seven Hydrophobic Clusters in GCN4 Making Redundant Contributions to Transcriptional Activation

, , &
Pages 5557-5571 | Received 29 Apr 1996, Accepted 09 Jul 1996, Published online: 29 Mar 2023

REFERENCES

  • Arndt, K., S. Ricupero-Hovasse, and F. Winston. 1995. TBP mutants defective in activated transcription in vivo. EMBO J. 14: 1490–1497.
  • Baniahmad, A., I. Ha, D. Reinberg, S. Tsai, M. Tsai, and B. O’Malley. 1993. Interaction of human thyroid hormone receptor β with transcription factor TFIIB may mediate target gene depression and activation by thyroid hormone. Proc. Natl. Acad. Sci. USA 90: 8832–8836.
  • Barettino, D., M. D. M. Vivanco Ruiz, and H. G. Stunnenberg. 1994. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13: 3039–3049.
  • Barlev, N. A., R. Candau, L. Wang, P. Darpino, N. Silverman, and S. L. Berger. 1995. Characterization of physical interactions of the putative transcriptional adaptor, ADA2, with acidic activation domains and TATA-binding protein. J. Biol. Chem. 270: 19337–19344.
  • Berger, S. L., B. Piña, N. Silverman, G. A. Marcus, J. Agapite, J. L. Regier, S. J. Triezenberg, and L. Guarente. 1992. Genetic isolation of ADA2: a potential transcription adaptor required for function of certain acidic domains. Cell 70: 251–265.
  • Blair, W. B., H. P. Bogerd, S. J. Madore, and B. R. Cullen. 1994. Mutational analysis of the transcriptional activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol. Cell. Biol. 14: 7226–7234.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
  • Buratowski, S. 1994. The basics of basal transcription by RNA polymerase II. Cell 77: 1–3.
  • Cadwell, R. C., and G. F. Joyce. 1992. Randomization of genes by PCR mutagenesis. PCR Methods Applic. 2: 28–33.
  • Caron, C., R. Rousset, C. Beraud, V. Moncollin, J. Egly, and P. Jalinot. 1993. Functional and biochemical interaction of the HTLV-1 Tax1 transactivator with TBP. EMBO J. 12: 4269–4278.
  • Chatterjee, S., and K. Struhl. 1995. Connecting a promoter-bound protein to TBP bypasses the need for a transcriptional activation domain. Nature (London) 374: 820–822.
  • Chen, J.-L., L. Attardi, C. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell 79: 93–105.
  • Choy, B., and M. R. Green. 1993. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature (London) 366: 531–536.
  • Cress, W. D., and S. J. Triezenberg. 1991. Critical structural elements of the VP16 transcriptional activation domain. Science 251: 87–90.
  • Dahlman-Wright, K., H. Baumann, I. McEwan, T. Almlof, A. Wright, J. Gustafsson, and T. Hard. 1995. Structural characterization of a minimal function transactivation domain from the human glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 92: 1699–1703.
  • Drysdale, C. M., E. Dueñas, B. M. Jackson, U. Reusser, G. H. Braus, and A. G. Hinnebusch. 1995. The transcriptional activator GCN4 contains multiple activation domains that are critically dependent on hydrophobic amino acids. Mol. Cell. Biol. 15: 1220–1233.
  • Ellenberger, T. E., C. J. Brandl, K. Struhl, and S. C. Harrison. 1992. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein-DNA complex. Cell 71: 1223–1237.
  • Ge, H., and R. Roeder. 1994. Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78: 513–523.
  • Geisberg, J., W. Lee, A. Berk, and R. Ricciardi. 1994. The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. Proc. Natl. Acad. Sci. USA 91: 2488–2492.
  • Georgakopoulos, T., N. Gounalaki, and G. Thireos. 1995. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2. Mol. Gen. Genet. 246: 723–728.
  • Georgakopoulos, T., and G. Thireos. 1992. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11: 4145–4152.
  • Gill, G., E. Pascal, Z. H. Tseng, and R. Tjian. 1994. A glutamine-rich hydrophobic patch in transcription factor Sp1 contacts the dTAFII110 component of the Drosophila TFIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. USA 91: 192–196.
  • Goodrich, J. A., T. Hoey, C. J. Thut, A. Admon, and R. Tjian. 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75: 519–530.
  • Hagemeier, C., A. Cook, and T. Kouzarides. 1993. The retinoblastoma protein binds E2F residues required for activation in vivo and TBP binding in vitro. Nucleic Acids Res. 21: 4998–5004.
  • Hardwick, J. M., L. Tse, N. Applegren, J. Nicholas, and M. A. Veliuona. 1992. The Epstein-Barr virus R transactivator (Rta) contains a complex, potent activation domain with properties different from those of VP16. J. Virol. 66: 5500–5508.
  • Hengartner, C., C. Thompson, J. Zhang, D. Chao, S.-M. Liao, A. Koleske, S. Okamura, and R. Young. 1995. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9: 897–910.
  • Hinnebusch, A. G. 1984. Evidence for translational regulation of the activator of general amino acid control in yeast. Proc. Natl. Acad. Sci. USA 81: 6442–6446.
  • Hinnebusch, A. G. 1992. General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in Saccharomyces cerevisiae, p. 319–414. In E. W. Jones, J. R. Pringle, and J. R. Broach (ed.), The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hinnebusch, A. G., and G. R. Fink. 1983. Positive regulation in the general amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80: 5374–5378.
  • Hope, I. A., S. Mahadevan, and K. Struhl. 1988. Structural and functional characterization of the short acidic transcriptional activation region of yeast GCN4 protein. Nature (London) 333: 635–640.
  • Hope, I. A., and K. Struhl. 1985. GCN4 protein, synthesized in vitro, binds HIS3 regulatory sequences: implications for the general control of amino acid biosynthetic genes in yeast. Cell 43: 177–188.
  • Hope, I. A., and K. Struhl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46: 885–894.
  • Hope, I. A., and K. Struhl. 1987. GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J. 6: 2781–2784.
  • Ingles, C. J., M. Shales, W. D. Cress, S. J. Triezenberg, and J. Greenblatt. 1991. Reducing binding of TFIID to transcriptionally compromised mutants of VP16. Nature (London) 351: 588–590.
  • Jacq, X., C. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Tora. 1994. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79: 107–117.
  • Kashanchi, F., G. Piras, M. Radonovich, J. Duvall, A. Fattaey, C. Chiang, R. Roeder, and J. Brady. 1994. Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature (London) 367: 295–300.
  • Kerr, L., L. Ransone, P. Wamsley, M. Schmitt, T. Boyer, Q. Zhou, A. Berk, and I. Verma. 1993. Association between proto-oncoprotein Rel and TATA-binding protein mediates transcriptional activation by NF-KappaB. Nature (London) 365: 412–419.
  • Kim, T. K., S. Hashimoto, R. J. Kelleher, P. M. Flanagan, R. D. Kornberg, M. Horikoshi, and R. G. Roeder. 1994. Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature (London) 369: 252–255.
  • Kim, T., and R. Roeder. 1994. Proline-rich activator CTF1 targets the TFIIB assembly step during transcriptional activation. Proc. Natl. Acad. Sci. USA 91: 4170–4174.
  • Klages, N., and M. Strubin. 1995. Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature (London) 374: 822–823.
  • Koleske, A., and R. Young. 1995. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20: 113–116.
  • Lee, M., and K. Struhl. 1995. Mutations on the DNA-binding surface of TATA-binding protein can specifically impair the response to acidic activators in vivo. Mol. Cell. Biol. 15: 5461–5469.
  • Lee, W., C. Kao, G. Bryant, X. Liu, and A. Berk. 1991. Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. Cell 67: 365–376.
  • Leuther, K. K., J. M. Salmeron, and S. A. Johnston. 1993. Genetic evidence that an activation domain of GAL4 does not require acidity and may form a β sheet. Cell 72: 575–585.
  • Lienhard Schmitz, M., M. Dos Santos Silva, H. Altmann, M. Czisch, T. Holak, and P. Baeuerle. 1994. Structural and functional analysis of the NF-kB p65 terminus. An acidic and modular transactivation domain with the potential to adopt an alpha-helical conformation. J. Biol. Chem. 269: 25613–25620.
  • Lin, J., J. Chen, B. Elenbaas, and A. J. Levine. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8: 1235–1246.
  • Lin, Y., and M. R. Green. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64: 971–981.
  • Lin, Y., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1991. Binding of general transcription factor TFIIB to an acidic activating region. Nature (London) 353: 569–571.
  • Lu, H., and A. Levine. 1995. Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. USA 92: 5154–5158.
  • Melcher, K., and S. A. Johnston. 1995. GAL4 interacts with TATA-binding protein and coactivators. Mol. Cell. Biol. 15: 2839–2848.
  • Metz, R., A. J. Bannister, J. A. Sutherland, C. Hagemeier, E. C. O’Rourke, A. Cook, R. Bravo, and T. Kouzarides. 1994. c-Fos-Induced activation of a TATA-box-containing promoter involves direct contact with TATA-binding protein. Mol. Cell. Biol. 14: 6021–6029.
  • Metz, R., T. Kouzarides, and R. Bravo. 1994. A C-terminal domain in FosB, absent in FosB/SF and Fra-1, which is able to interact with the TATA binding protein, is required for altered cell growth. EMBO J. 13: 3832–3842.
  • Moehle, C. M., and A. G. Hinnebusch. 1991. Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 2723–2735.
  • Narayan, S., S. Widen, W. Beard, and S. Wilson. 1994. RNA polymerase II transcription. Rate of promoter clearance is enhanced by a purified activating transcription factor/cAMP response element-binding protein. J. Biol. Chem. 269: 12755–12763.
  • Natarajan, K., and A. Hinnebusch. Unpublished observations.
  • Paluh, J. L., and C. Yanofsky. 1991. Characterization of Neurospora CPC1, a bZIP DNA binding protein that does not require aligned heptad leucines for dimerization. Mol. Cell. Biol. 11: 935–944.
  • Parent, S. A., C. M. Fenimore, and K. A. Bostian. 1985. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1: 83–138.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20: 143–146.
  • Piña, B., S. Berger, G. Marcus, N. Silverman, J. Agapite, and L. Guarente. 1993. ADA3: a gene, identified by resistance to GAL4-VP16, with properties similar to and different from those of ADA2. Mol. Cell. Biol. 13: 5981–5989.
  • Regier, J. L., F. Shen, and S. J. Triezenberg. 1993. Pattern of aromatic and hydrophobic amino acids critical for one of two subdomains of the VP16 transcriptional activator. Proc. Natl. Acad. Sci. USA 90: 883–887.
  • Seipel, K., O. Georgiev, and W. Schaffner. 1994. A minimal transcription activation domain consisting of a specific array of aspartic acid and leucine residues. Biol. Chem. Hoppe-Seyler 375: 463–470.
  • Shen, F., S. J. Triezenberg, P. Hensley, D. Porter, and J. R. Knutson. 1996. Critical amino acids in the transcriptional activation domain of the herpesvirus protein VP16 are solvent-exposed in highly mobile protein segments. J. Biol. Chem. 271: 4819–4826.
  • Shen, F., S. J. Triezenberg, P. Hensley, D. Porter, and J. R. Knutson. 1996. Transcriptional activation domain of the herpesvirus protein VP16 becomes conformationally constrained upon interaction with basal transcription factors. J. Biol. Chem. 271: 4827–4837.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1974. Methods of yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Tanaka, M., and W. Herr. 1994. Reconstitution of transcriptional activation domains by reiteration of short peptide segments reveals the modular organization of a glutamine-rich activation domain. Mol. Cell. Biol. 14: 6056–6067.
  • Tavernarakis, N., and G. Thireos. 1995. Transcriptional interference caused by GCN4 overexpression reveals multiple interactions mediating transcriptional activation. Mol. Gen. Genet. 247: 571–578.
  • Thut, C., J.-L. Chen, R. Klemm, and R. Tjian. 1995. P53 Transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267: 100–104.
  • Tong, X., R. Drapkin, D. Reinberg, and E. Kieff. 1995. The 62- and 80-kDa subunits of transcription factor IIH mediate the interaction with Epstein-Barr virus nuclear protein 2. Proc. Natl. Acad. Sci. USA 92: 3259–3263.
  • Walker, S., R. Greaves, and P. O’Hare. 1993. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding. Mol. Cell. Biol. 13: 5233–5244.
  • Xiao, H., J. Friesen, and J. Lis. 1995. Recruiting TATA-binding protein to a promoter: transcriptional activation without an upstream activator. Mol. Cell. Biol. 15: 5757–5761.
  • Xiao, H., J. D. Friesen, and J. T. Lis. 1994. A highly conserved domain of RNA polymerase II shares a functional element with acidic activation domains of upstream transcription factors. Mol. Cell. Biol. 14: 7507–7516.
  • Xiao, H., A. Pearson, B. Coulombe, R. Truant, S. Zhang, J. Regier, S. Triezenberg, D. Reinberg, O. Flores, C. Ingles, and J. Greenblatt. 1994. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14: 7013–7024.
  • Xu, X., C. Prorock, H. Ishikawa, E. Maldonado, Y. Ito, and C. Gelinas. 1993. Functional interaction of the v-Rel and c-Rel oncoproteins with the TATA-binding protein and association with transcription factor IIB. Mol. Cell. Biol. 13: 6733–6741.
  • Yankulov, K., J. Blau, T. Purton, S. Roberts, and D. Bentley. 1994. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 77: 749–759.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.