10
Views
43
CrossRef citations to date
0
Altmetric
Research Article

An Unusual Mechanism of Self-Primed Reverse Transcription Requires the RNase H Domain of Reverse Transcriptase To Cleave an RNA Duplex

Pages 5645-5654 | Received 30 May 1996, Accepted 24 Jul 1996, Published online: 29 Mar 2023

REFERENCES

  • Atwood, A., J. Lin, and H. Levin. 1996. The retrotransposon Tf1 assembles virus-like particles with excess Gag relative to integrase because of a regulated degradation process. Mol. Cell. Biol. 16: 338–346.
  • Blain, S. W., and S. P. Goff. 1993. Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J. Biol. Chem. 268: 23585–23592.
  • Boeke, J. D., J. Trueheart, G. Natsoulis, and G. R. Fink. 1987. 5-Fluoro-orotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154: 164–175.
  • Chapman, K. B., A. S. Bystrom, and J. D. Boeke. 1992. Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc. Natl. Acad. Sci. USA 89: 3236–3240.
  • Davies, J., Z. Hostomska, S. Hostomsky, S. Jordon, and D. Matthews. 1991. Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. Science 252: 88–95.
  • Doolittle, R. F., D. F. Feng, M. S. Johnson, and M. A. McClure. 1989. Origins and evolutionary relationships of retroviruses. Q. Rev. Biol. 64: 1–30.
  • Eichinger, D. J., and J. D. Boeke. 1988. The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell 54: 955–966.
  • Eichinger, D. J., and J. D. Boeke. 1990. A specific terminal structure is required for Ty1 transposition. Genes Dev. 4: 324–330.
  • Gabriel, A., and J. D. Boeke (ed.). 1993. Retrotransposon reverse transcription. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Garfinkel, D. J., J. D. Boeke, and G. R. Fink. 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42: 507–517.
  • Götte, M., S. Fackler, T. Hermann, E. Perola, L. Cellai, H. J. Gross, S. F. Le Grice, and H. Heumann. 1995. HIV-1 reverse transcriptase-associated RNase H cleaves RNA/RNA in arrested complexes: implications for the mechanism by which RNase H discriminates between RNA/RNA and RNA/ DNA. EMBO J. 14: 833–841.
  • Hostomsky, Z., Z. Hostomska, and D. Matthews (ed.). 1993. Ribonucleases H. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hostomsky, Z., S. H. Hughes, S. P. Goff, and S. F. Le Grice. 1994. Redesignation of the RNase D activity associated with retroviral reverse transcriptase as RNase H. J. Virol. 68: 1970–1971.
  • Hsu, M., S. Eagle, S. Inouye, and M. Inouye. 1992. Cell-free synthesis of the branched RNA-linked msDNA from retron-Ec67 of Escherichia coli. J. Biol. Chem. 267: 13823–13829.
  • Katayanagi, K., M. Miyagawa, M. Matsushima, M. Ishikawa, S. Kanaya, M. Ikehara, T. Matsuzaki, and K. Morikawa. 1990. Three dimensional structure of ribonuclease H from E. coli. Nature (London) 347: 306–309.
  • Kikuchi, Y., Y. Ando, and T. Shiba. 1986. Unusual priming mechanism of RNA-directed DNA synthesis in copia retrovirus-like particles of Drosophila. Nature (London) 323: 824–826.
  • Kikuchi, Y., and N. Sasaki. 1992. Hyperprocessing of tRNA by the catalytic RNA of RNase P. Cleavage of a natural tRNA within the mature tRNA sequence and evidence for an altered conformation of the substrate tRNA. J. Biol. Chem. 267: 11972–11976.
  • Kikuchi, Y., N. Sasaki, and Y. Ando-Yamagami. 1990. Cleavage of tRNA within the mature tRNA sequence by the catalytic RNA of RNase P: implication for the formation of the primer tRNA fragment for reverse transcription in copia retrovirus-like particles. Proc. Natl. Acad. Sci. USA 87: 8105–8109.
  • Lampson, B., J. Sun, M. Hsu, J. Vallejo-Ramirez, S. Inouye, and M. Inouye. 1989. Reverse transcriptase in a clinical strain of Escherichia coli: production of branched RNA-linked msDNA. Science 243: 1033–1038.
  • Lampson, B. C., M. Inouye, and S. Inouye. 1989. Reverse transcriptase with concomitant ribonuclease H activity in the cell-free synthesis of branched RNA-linked msDNA of Myxococcus xanthus. Cell 56: 701–707.
  • Larder, B., D. J. M. Purifoy, K. Powell, and G. Darby. 1987. Site-specific mutagenesis of AIDS virus reverse transcriptase. Nature (London) 327: 716–717.
  • Leis, J., A. Aiyar, and D. Cobrinik. 1993. Regulation of initiation of reverse transcription of retroviruses, p. 33–47. In A. Skalka and S. Goff (ed.), Reverse transcriptase. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Levin, H. L. 1995. A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol. Cell. Biol. 15: 3310–3317.
  • Levin, H. L., and J. D. Boeke. 1992. Demonstration of retrotransposition of the Tf1 element in fission yeast. EMBO J. 11: 1145–1153.
  • Levin, H. L., D. C. Weaver, and J. D. Boeke. 1990. Two related families of retrotransposons from Schizosaccharomyces pombe. Mol. Cell. Biol. 10: 6791–6798.
  • Levin, H. L., D. C. Weaver, and J. D. Boeke. 1993. Novel gene expression mechanism in a fission yeast retroelement: Tf1 proteins are derived from a single primary translation product. EMBO J. 12: 4885–4895.
  • Luan, D. D., M. H. Korman, J. L. Jakubczak, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595–605.
  • Mizrahi, V., R. Brooksbank, and N. Nkabinde. 1994. Mutagenesis of the conserved aspartic acid 443, glutamic acid 478, and aspartic acid 498 residues in the ribonuclease H domain of p66/p51 human immunodeficiency virus type I reverse transcriptase. J. Biol. Chem. 269: 19245–19249.
  • Moore, M., and P. Sharp. 1992. Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256: 992–997.
  • Moreno, S., A. Klar, and P. Nurse. 1991. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194: 795–823.
  • Repaske, R., J. Hartley, M. Kavlick, R. O’Neill, and J. Austin. 1989. Inhibition of RNase H activity and viral replication by single mutations in the 3′ region of Moloney murine leukemia virus reverse transcriptase. J. Virol. 63: 1460–1464.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Springer, M. S., and R. J. Britten. 1993. Phylogenetic relationships of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol. Biol. Evol. 10: 1370–1379.
  • Varmus, H., and P. Brown (ed.). 1989. Retroviruses. American Society for Microbiology, Washington, D.C.
  • Varmus, H. E., and R. Swanstrom. 1984. Replication of retroviruses, p. 369–512. In R. Weiss, N. Teich, H. Varmus, and J. Coffin (ed.), RNA tumor viruses, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Volkmann, S., B. Wöhrl, M. Tisdale, and K. Moelling. 1993. Enzymatic analysis of two HIV-1 reverse transcriptase mutants with mutations in carboxyl-terminal amino acid residues conserved among retroviral ribonucleases H. J. Biol. Chem. 268: 2674–2683.
  • Wang, G. W., and C. Seeger. 1992. The reverse transcriptase of hepatitis B virus acts as a protein primer for viral DNA synthesis. Cell 71: 663–670.
  • Wang, H., and A. Lambowitz. 1993. The Mauriceville plasmid reverse transcriptase can initiate cDNA synthesis de novo and may be related to reverse transcriptase and DNA polymerase progenitor. Cell 75: 1071–1081.
  • Xiong, Y., W. Burke, and T. Eickbush. 1993. Pao, a highly divergent retro-transposable element from Bombyx mori containing long terminal repeats with tandem copies of the putative R region. Nucleic Acids Res. 21: 2117–2123.
  • Xiong, Y., and T. H. Eickbush. 1988. Similarity of reverse transcriptase-like sequences of viruses, transposable elements, and mitochondrial introns. Mol. Biol. Evol. 5: 675–690.
  • Xiong, Y., and T. H. Eickbush. 1990. Origin and evolution of retroelements based on their reverse transcriptase sequences. EMBO J. 9: 3353–3362.
  • Yang, W., W. Hendrickson, R. Crouch, and Y. Satow. 1990. Structure of ribonuclease H phased at 2 A resolution by MAD analysis of the selenomethionine protein. Science 249: 1398–1405.
  • Zimmerly, S., H. Guo, R. Eskes, J. Yang, P. S. Perlman, and A. M. Lambowitz. 1995. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83: 529–538.
  • Zimmerly, S., H. Guo, P. S. Perlman, and A. M. Lambowitz. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82: 545–554.
  • Zoulim, F., and C. Seeger. 1994. Reverse transcription in hepatitis B viruses is primed by a tyrosine residue of the polymerase. J. Virol. 68: 6–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.