9
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Adenovirus E1A Specifically Blocks SWI/SNF-Dependent Transcriptional Activation

, , , , &
Pages 5737-5743 | Received 09 May 1996, Accepted 11 Jul 1996, Published online: 29 Mar 2023

REFERENCES

  • Arany, Z., D. Newsome, E. Oldread, D. M. Livingston, and R. Eckner. 1995. A family of transcriptional adapter proteins targeted by the El A oncoprotein. Nature (London) 374:81–84.
  • Arany, Z., W. R. Sellers, D. M. Livingston, and R. Eckner. 1994. E1A-associated p300 and CREB-associated CBP belong to a conserved family of coactivators. Cell 77:799–800.
  • Bartlett, R., and P. Nurse. 1990. Yeast as a model system for understanding the control of DNA replication in eukaryotes. Bioessays 12:457–463.
  • Bayley, S. T., and J. S. Mymryk. 1994. Adenovirus El A proteins and transformation. Int. J. Oncol. 5425–444.
  • Cairns, B. R., Y. J. Kim, M. H. Sayre, B. C. Laurent, and R. D. Kornberg. 1994. A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5, and SNF6 gene products isolated from yeast. Proc. Natl. Acad. Sci. USA 91:1950–1954.
  • Cairns, B. R., R. S. Levinson, K. R. Yamamoto, and R. D. Kornberg. Essential role of Swp73p in function of the yeast Swi/Snf complex. Genes Dev., in press.
  • Carlson, M., and B. C. Laurent. 1994. The SNF/SWI family of global transcriptional activators. Curr. Opin. Cell Biol. 6:396–402.
  • Cheney, W., P. Dallas, V. Bowrin, V. Srinivas, and E. Moran. Personal communication.
  • Côté, J., J. Quinn, J. L. Workman, and C. L. Peterson. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60.
  • Coulombe, B., M. Killeen, P. Liljelund, B. Honda, H. Xiao, C. J. Ingles, and J. Greenblatt. 1992. Identification of three mammalian proteins that bind to the yeast TATA box protein TFIID. Gene Expr. 2:99–110.
  • Dingwall, C., S. Kandels-Lewis, and B. Seraphin. 1995. A family of Ran binding proteins that includes nucleoporins. Proc. Natl. Acad. Sci. USA 92:7525–7529.
  • Donald, K. A. G., J. Hill, and D. E. Griffiths. Unpublished data.
  • Dunaief, J. L., B. E. Strober, S. Guha, P. A. Khavari, K. Alin, J. Luban, M. Begemann, G. R. Crabtree, and S. P. Goff. 1994. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130.
  • Dyson, N., and E. Harlow. 1992. Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv. 12:161–195.
  • Egan, C., T. N. Jelsma, J. A. Howe, S. T. Bayley, B. Ferguson, and P. E. Branton. 1988. Mapping of cellular protein-binding sites on the products of early region 1A of human adenovirus type 5. Mol. Cell. Biol. 8:3955–3959.
  • Engel, D. A., S. Hardy, and T. Shenk. 1988. cAMP acts in synergy with E1A protein to activate transcription of the adenovirus early genes E4 and E1A. Genes Dev. 2:1517–1528.
  • Engel, D. A., U. Muller, R. W. Gedrich, J. S. Eubanks, and T. Shenk. 1991. Induction of c-fos mRNA and AP-1 DNA-binding activity by cAMP in cooperation with either the adenovirus 243- or the adenovirus 289-amino acid El A protein. Proc. Natl. Acad. Sci. USA 88:3957–3961.
  • Estruch, F., and M. Carlson. 1990. SNF6 encodes a nuclear protein that is required for expression of many genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2544–2553.
  • Gedrich, R. W., S. T. Bayley, and D. A. Engel. 1992. Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R El A protein and cyclic AMP requires domains necessary for transformation. J. Virol. 66:5849–5859.
  • Gietz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425.
  • Harlow, E., B. R. Franza, Jr., and C. Schley. 1985. Monoclonal antibodies specific for adenovirus early region 1A proteins: extensive heterogeneity in early region 1A products. J. Virol. 55:533–546.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual, p. 421–510. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hatakeyama, M., J. A. Brill, G. R. Fink, and R. A. Weinberg. 1994. Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev. 8:1759–1771.
  • Hirsch, J. P., and S. A. Henry. 1986. Expression of the Saccharomyces cerevisiae inositol-l-phosphate synthase (INOl) gene is regulated by factors that affect phospholipid synthesis. Mol. Cell. Biol. 6:3320–3328.
  • Hirschhorn, J. N., S. A. Brown, C. D. Clark, and F. Winston. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and R. E. Kingston. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature (London) 370:481–485.
  • Janaswami, P. M., D. V. Kalvakolanu, Y. Zhang, and G. C. Sen. 1992. Transcriptional repression of interleukin-6 gene by adenovirual E1A proteins. J. Biol. Chem. 267:24886–24891.
  • Kalvakolanu, D. V., J. Liu, R. W. Hanson, M. L. Harter, and G. C. Sen. 1992. Adenovirus El A represses the cyclic AMP-induced transcription of the gene for phosphoenolpyruvate carboxykinase (GTP) in hepatoma cells. J. Biol. Chem. 267:2530–2536.
  • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and A. D. Johnson. 1992. Ssn6-Tupl is a general repressor of transcription in yeast. Cell 68:709–719.
  • Kelleher, R. J., III, P. M. Flanagan, D. I. Chasman, A. S. Ponticelli, K. Struhl, and R. D. Kornberg. 1992. Yeast and human TFIIDs are interchangeable for the response to acidic transcription activators in vitro. Genes. Dev. 6:296–303.
  • Kornuc, M., R. Altman, D. Harrich, J. Garcia, J. Chao, P. Kayne, and R. Gaynor. 1988. Adenovirus transcriptional regulatory regions are conserved in mammalian cells and Saccharomyces cerevisiae. Mol. Cell. Biol. 8:3717–3725.
  • Kraus, V. B., J. A. Inostroza, K. Yeung, D. Reinberg, and J. R. Nevins. 1994. Interaction of the Drl inhibitory factor with the TATA binding protein is disrupted by adenovirus E1A. Proc. Natl. Acad. Sci. USA 91:6279–6282.
  • Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and M. R. Green. 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature (London) 370:477–481.
  • Laurent, B. C., and M. Carlson. 1992. Yeast SNF2/SWI2, SNF5, and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid. Genes Dev. 6:1707–1715.
  • Laurent, B. C., I. Treich, and M. Carlson. 1993. Role of yeast SNF and SWI proteins in transcriptional activation. Cold Spring Harbor Symp. Quant. Biol. 58:257–263.
  • Laurent, B. C., M. A. Treitel, and M. Carlson. 1990. The SNF5 protein of Saccharomyces cerevisiae is a glutamine- and proline-rich transcriptional activator that affects expression of a broad spectrum of genes. Mol. Cell. Biol. 10:5616–5625.
  • Lawrence, C. W. 1991. Classical mutagenesis techniques. Methods Enzymol. 194:273–281.
  • Lefebvre, L., and M. Smith. 1993. Mutational and functional analysis of dominant SPT2 (SIN1) suppressor alleles in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:5393–5407.
  • Lewis, B. A., G. Tullis, E. Seto, N. Horikoshi, R. Weinmann, and T. Shenk. 1995. Adenovirus El A proteins interact with the cellular YY1 transcription factor. J. Virol. 69:1628–1636.
  • Lundblad, J. R., R. P. S. Kwok, M. E. Laurance, M. L. Harter, and R. H. Goodman. 1995. Adenovirual ElA-associated protein p300 as a functional homolog of the transcriptional coactivator CBP. Nature (London) 374:85–88.
  • Malhotra, P., C. F. Manohar, S. Swaminathan, R. Toyama, R. Dhar, R. Reichel, and B. Thimmappaya. 1993. E2F site activates transcription in fission yeast Schizosaccharomyces pombe and binds to a 30-kDa transcription factor. J. Biol. Chem. 268:20392–20401.
  • Miller, M. E., D. A. Engel, and M. M. Smith. 1995. Cyclic AMP signaling is required for function of the N-terminal and CR1 domains of adenovirus El A in Saccharomyces cerevisiae. Oncogene 11: 1623-1630.
  • Muchardt, C., C. Sardet, B. Bourachot, C. Onufryk, and M. Yaniv. 1995. A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Res. 23:1127–1132.
  • Peterson, C. L., A. Dingwall, and M. P. Scott. 1994. Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc. Natl. Acad. Sci. USA 91:2905–2908.
  • Peterson, C. L., and I. Herskowitz. 1992. Characterization of the yeast SWIl, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583.
  • Peterson, C. L., W. Kruger, and I. Herskowitz. 1991. A functional interaction between the C-terminal domain of RNA polymerase II and the negative regulator SIN1. Cell 64:1135–1143.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Powers, S. 1992. Genetic analysis of ras homologs in yeasts. Semin. Cancer Biol. 3:209–218.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shortle, D., P. Novick, and D. Botstein. 1984. Construction and genetic characterization of temperature-sensitive mutant alleles of the yeast actin gene. Proc. Natl. Acad. Sci. USA 81:4889–4893.
  • Shrivastava, A., S. Saleque, G. V. Kalpana, S. Artandi, S. P. Goff, and K. Calame. 1993. Inhibition of transcriptional regulator Yin-Yang-1 by association with c-Myc. Science 262:1889–1892.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19-27.
  • Strober, B. E., J. L. Dunaief, S. Guha, and S. P. Goff. 1996. Functional interactions between the hBRM/hBRGl transcriptional activators and the pRB family of proteins. Mol. Cell. Biol. 16:1576–1583.
  • Treich, I., B. R. Cairns, T. E. Brewster, and M. Carlson. 1995. SNF11, a new component of the yeast SNF-SWI complex that interacts with a conserved region of SNF2. Mol. Cell. Biol. 15:4240–4248.
  • Vincent, A. C., and K. Struhl. 1992. ACR1, a yeast ATF/CREB repressor. Mol. Cell. Biol. 12:5394–5405.
  • Wada, T., Y. Nogi, H. Handa, and T. Fukasawa. 1990. Strain-specific lethal effect of the adenovirus E1A protein on Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun 170: 470-476.
  • Whyte, P., N. M. Williamson, and E. Harlow. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75.
  • Wills, C., T. Martin, and T. Melham. 1986. Effect of gluconeogenesis of mutants blocking two mitochondrial transport systems in the yeast Saccharomyces cerevisiae. Arch. Biochem. Biophys. 246:306–320.
  • Winston, F., and M. Carlson. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:387–391.
  • Wolffe, A. P. 1994. Transcriptional activation. Switched-on chromatin. Curr. Biol. 4:525–528.
  • Yoshinaga, S. K., C. L. Peterson, I. Herskowitz, and R. K. Yamamoto. 1992. Roles of SWIl, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258:1598–1604.
  • Zhou, Q., R. W. Gedrich, and D. A. Engel. 1995. Transcriptional repression of the c-fos gene by YY1 is mediated by a direct interaction with ATF/ CREB. J. Virol. 69: 4323-4330.
  • Zieler, H. A., M. Walberg, and P. Berg. 1995. Suppression of mutations in two Saccharomyces cerevisiae genes by the adenovirus E1A protein. Mol. Cell. Biol. 15:3227–3237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.