3
Views
94
CrossRef citations to date
0
Altmetric
Research Article

Molecular Cloning of Drosophila mus308, a Gene Involved in DNA Cross-Link Repair with Homology to Prokaryotic DNA Polymerase I Genes†

, , , , &
Pages 5764-5771 | Received 26 Apr 1996, Accepted 01 Jul 1996, Published online: 29 Mar 2023

REFERENCES

  • Aguirrezabalaga, L., L. M. Sierra, and M. A. Comendador. 1995. The hypermutability conferred by the mus308 mutation of Drosophila is not specific for cross-linking agents. Mutat. Res. 336:243–250.
  • Astatke, M., N. D. Grindley, and C. M. Joyce. 1995. Deoxynucleoside triphosphate and pyrophosphate binding sites in the catalytically competent ternary complex for the polymerase reaction catalyzed by DNA polymerase I (Klenow fragment). J. Biol. Chem. 270:1945–1954.
  • Atschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. A. Smith, J. G. Siedman, and K. Struhl (ed.). 1987. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York.
  • Basu, S., A. Basu, and M. J. Modak. 1988. Pyridoxal 5′-phosphate mediated inactivation of Escherichia coli DNA polymerase I: identification of lysine-635 as an essential residue for the processive mode of DNA synthesis. Biochemistry 27:6710–6716.
  • Beese, L. S., V. Derbyshire, and T. A. Steitz. 1993. Structure of DNA polymerase I Klenow fragment bound to duplex DNA. Science 260:352–355.
  • Beese, L. S., and T. A. Steitz. 1991. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10:25–33.
  • Bernad, A., L. Blanco, J. M. Lazaro, G. Martin, and M. Salas. 1989. A conserved 3′-5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228.
  • Blanco, L., A. Bernad, and M. Salas. 1991. MIPl DNA polymerase of S. cerevisiae: structural similarity with the E. coli DNA polymerase I-type enzymes. Nucleic Acids Res. 19: 955.
  • Boyd, J. B., M. D. Golino, T. D. Nguyen, and M. M. Green. 1976. Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84:485–506.
  • Boyd, J. B., M. D. Golino, K. E. Shaw, C. J. Osgood, and M. M. Green. 1981. Third-chromosome mutagen-sensitive mutants of Drosophila melanogaster. Genetics 97:607–623.
  • Boyd, J. B., J. M. Mason, A. H. Yamamoto, R. K. Brodberg, S. S. Banga, and K. Sakaguchi. 1987. A genetic and molecular analysis of DNA repair in Drosophila. J. Cell Sci. Suppl. 6:39–60.
  • Boyd, J. B., K. Sakaguchi, and P. V. Harris. 1990. mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics 125:813–819.
  • Boyd, J. B., and K. E. S. Shaw. 1982. Postreplication repair defects in mutants of Drosophila melanogaster. Mol. Gen. Genet. 186:289–294.
  • Braithwaite, D. K., and J. Ito. 1993. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 21:787–802.
  • Cloud, K. G., B. Shen, G. F. Strniste, and M. S. Park. 1995. XPG protein has a structure-specific endonuclease activity. Mutat. Res. 347:55–60.
  • Cole, R. S., and R. R. Sinden. 1975. Repair of cross-linked DNA in Escherichia coli. Basic Life Sci. 5B:487–495.
  • Delarue, M., M. Poch, N. Tordo, D. Moras, and P. Argos. 1990. An attempt to unify the structure of polymerases. Protein Eng. 3:461–467.
  • Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Genetics Computer Group. 1994. Program manual for the Wisconsin package, version 8 ed. Genetics Computer Group, Madison, Wis.
  • Gorbalenya, A. E., E. V. Koonin, A. P. Donchenko, and V. M. Blinov. 1988. A novel superfamily of nucleoside triphosphate-binding motif containing proteins which are probably involved in duplex unwinding in DNA and RNA replication and recombination. FEBS Lett. 235:16–24.
  • Gorbalenya, A. E., E. V. Koonin, A. P. Donchenko, and V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:4713–4730.
  • Gruenert, D. C., and J. E. Cleaver. 1985. Repair of psoralen-induced crosslinks and monoadducts in normal and repair-deficient human fibroblasts. Cancer Res. 45:5399–5404.
  • Gutman, P. D., and K. W. Minton. 1993. Conserved sites in the 5′-3′ exonuclease domain of Escherichia coli DNA polymerase. Nucleic Acids Res. 21:4406–4407.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash. 1995. Structure-specific nuclease activity in yeast nucleotide excision repair protein Rad2. J. Biol. Chem. 270:30194–30198.
  • Harrington, J. J., and M. R. Lieber. 1994. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev. 8:1344–1355.
  • Henderson, D. S., D. A. Bailey, D. A. R. Sinclair, and T. A. Grigliatti. 1987. Isolation and characterization of second chromosome mutagen-sensitive mutations in Drosophila melanogaster. Mutat. Res. 177:83–93.
  • Henriques, J. A., and E. Moustacchi. 1980. Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95: 273–288.
  • Jachymczyk, W. J., R. C. von Borstel, M. R. Mowat, and P. J. Hastings. 1981. Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol. Gen. Genet. 182:196–205.
  • Joyce, C. M., and T. A. Steitz. 1994. Function and structure relationships in DNA polymerases. Annu. Rev. Biochem. 63:777–822.
  • Kim, Y., S. H. Eom, J. Wang, D. Lee, S. W. Suh, and T. A. Steitz. 1995. Crystal structure of Thermus aquaticus DNA polymerase. Nature (London) 376:612–616.
  • Kraulis, P. J. 1991. MolScript—a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24:946–950.
  • Langer, S. P., M. Levine, and D. C. Ward. 1982. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA 79:4381–4385.
  • Lawrence, C. E., S. F. Altschul, M. S. Boguski, J. S. Liu, A. F. Neuwald, and J. C. Wootton. 1993. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208–214.
  • Leonhardt, E. A., D. S. Henderson, J. E. Rinehart, and J. B. Boyd. 1993. Characterization of the mus308 gene in Drosophila melanogaster. Genetics 133: 87–96.
  • Lepesant, J. A., L. J. Kejzlarova, and A. Garen. 1978. Ecdysone-inducible functions of larval fat bodies in Drosophila. Proc. Natl. Acad. Sci. USA 75:5570–5574.
  • Lindsley, D. L., and G. G. Zimm. 1992. The genome of Drosophila melanogaster. Academic Press, Inc., San Diego, Calif.
  • Lüthy, R., J. U. Bowie, and E. Eisenberg. 1992. Assessment of protein models with three-dimensional profiles. Nature (London) 356:83–85.
  • Lyamichev, V., M. A. Brow, and J. E. Dahlberg. 1993. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260:778–783.
  • Magana-Schwencke, N., J. A. Henriques, R. Chanet, and E. Moustacchi. 1982. The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc. Natl. Acad. Sci. USA 79:1722–1726.
  • Miller, R. D., L. Prakash, and S. Prakash. 1982. Genetic control of excision of Saccharomyces cerevisiae interstrand DNA cross-links induced by psoralen plus near-UV light. Mol. Cell. Biol. 2:939–948.
  • O’Connell, P., and M. Rosbash. 1984. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 12:5495–5513.
  • Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448.
  • Robins, P., D. J. C. Pappin, R. D. Wood, and T. Lindahl. 1994. Structural and functional homology between mammalian DNase IV and the 5′-nuclease domain of Escherichia coli DNA polymerase I. J. Biol. Chem. 269:28535–28538.
  • Ruhland, A., M. Kircher, F. Wilborn, and M. Brendel. 1981. Ayeast mutant specifically sensitive to bifunctional alkylation. Mutat. Res. 91:457–462.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sladek, F. M., M. M. Munn, W. D. Rupp, and P. Howard-Flanders. 1989. In vitro repair of psoralen-DNA cross-links by RecA, UvrABC, and the 5′-exonuclease of DNA polymerase I. J. Biol. Chem. 264:6755–6765.
  • Smith, P. D. 1976. Mutagen sensitivity of Drosophila melanogaster. III. X-linked loci governing sensitivity to methyl methanesulfonate. Mol. Gen. Genet. 149:73–85.
  • Strathdee, C. A., A. M. Duncan, and M. Buchwald. 1992. Evidence for at least four Fanconi anaemia genes including FACC on chromosome 9. Nat. Genet. 1:196–198.
  • Strathdee, C. A., H. Gavish, W. R. Shannon, and M. Buchwald. 1992. Cloning of cDNAs for Fanconi’s anaemia by functional complementation. Nature (London) 356:763–767. (Erratum, 358:434.)
  • Tabor, S., and C. C. Richardson. 1995. A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc. Natl. Acad. Sci. USA 92:6339–6343.
  • Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
  • Van Houten, B., H. Gamper, S. R. Holbrook, J. E. Hearst, and A. Sancar. 1986. Action mechanism of ABC excision nuclease on a DNA substrate containing a psoralen crosslink at a defined position. Proc. Natl. Acad. Sci. USA 83:8077–8081.
  • Vuksanovic, L., and J. E. Cleaver. 1987. Unique cross-link and monoadduct repair characteristics of a xeroderma pigmentosum revertant cell line. Mutat. Res. 184:255–263.
  • Widner, W. R., and R. B. Wickner. 1993. Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol. Cell. Biol 13: 4331–4341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.