4
Views
51
CrossRef citations to date
0
Altmetric
Research Article

Yeast pip3/mec3 Mutants Fail To Delay Entry into S Phase and To Slow DNA Replication in Response to DNA Damage, and They Define a Functional Link between Mec3 and DNA Primase

, , &
Pages 3235-3244 | Received 22 Jan 1996, Accepted 28 Mar 1996, Published online: 29 Mar 2023

REFERENCES

  • Allen, J. B., Z. Zhou, W. Siede, E. C. Friedberg, and S. J. Elledge. 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8:2416–2428.
  • Ayyagari, R., K. J. Impellizzeri, B. L. Yoder, S. L. Gary, and P. M. J. Burgers. 1995. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and repair. Mol. Cell. Biol. 15:4420–4429.
  • Bakkenist, C. J., and S. Cotterill. 1994. The 50-kDa primase subunit of Drosophila melanogaster DNA polymerase α. J. Biol. Chem. 269:26759–26766.
  • Bender, A., and J. R. Pringle. 1991. Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:1295–1305.
  • Bruckner, A., F. Stadlbauer, L. A. Guarino, A. Brunhal, C. Schneider, C. Rehfuess, C. Prives, E. Fanning, and H.-P. Nasheuer. 1995. The mouse DNA polymerase α-primase subunit p48 mediates species-specific replication of polyoma virus DNA in vitro. Mol. Cell. Biol. 15:1716–1724.
  • Budd, M., and J. Campbell. 1995. DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2173–2179.
  • Campbell, J. L. 1993. Yeast DNA replication. J. Biol. Chem. 268:25261–25264.
  • Campbell, J. L., and C. S. Newlon. 1991. Chromosomal DNA replication, p. 41–146. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Carr, A., and M. F. Hoekstra. 1995. The cellular responses to DNA damage. Trends Cell Biol. 5:32–40.
  • Costigan, C., S. Gehrung, and M. Snyder. 1992. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol. Cell. Biol. 12:1162–1178.
  • Cvrckova, F., and K. Nasmyth. 1993. Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J. 12:5277–5286.
  • Dornreiter, I., W. C. Copeland, and T. S. F. Wang. 1993. Initiation of simian virus 40 DNA replication requires the interaction of a specific domain of human DNA polymerase a with large T antigen. Mol. Cell. Biol. 13:809–820.
  • Dornreiter, I., L. F. Erdile, U. Gilbert, D. von Winkler, T. J. Kelly, and E. Fanning. 1992. Interaction of DNA polymerase α-primase with replication protein A and SV40 T antigen. EMBO J. 11:769–776.
  • D’Urso, G., B. Grallert, and P. Nurse. 1995. DNA polymerase alpha, a component of the replication initiation complex, is essential for the checkpoint coupling S phase to mitosis in fission yeast. J. Cell Sci. 108:3109–3118.
  • Foiani, M., G. Liberi, G. Lucchini, and P. Plevani. 1995. Cell cycle-dependent phosphorylation and dephosphorylation of the yeast DNA polymerase α-primase complex B subunit. Mol. Cell. Biol. 15:883–891.
  • Foiani, M., F. Marini, D. Gamba, G. Lucchini, and P. Plevani. 1994. The B subunit of the DNA polymerase α-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stages of DNA replication. Mol. Cell. Biol. 14:923–933.
  • Francesconi, S., A. M. De Recondo, and G. Baldacci. 1995. DNA polymerase δ is required for the replication feedback control of cell cycle progression in Schizosaccharomyces pombe. Mol. Gen. Genet. 246:561–569.
  • Francesconi, S., M. P. Longhese, A. Piseri, C. Santocanale, G. Lucchini, and P. Plevani. 1991. Mutations in conserved yeast DNA primase domains impair DNA replication in vivo. Proc. Natl. Acad. Sci. USA 88:3877–3881.
  • Friedberg, E. C., G. C. Walker, and W. D. Siede. 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Garvik, B., M. Carson, and L. Hartwell. 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15:6128–6138.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six base-pair restriction sites. Gene 74:527–534.
  • Hartwell, L. H., and M. B. Kastan. 1994. Cell cycle control and cancer. Science 266:1821–1828.
  • Hartwell, L. H., and D. Smith. 1985. Altered fidelity of mitotic chromosome transmission in cell cycle mutants of S. cerevisiae. Genetics 110:381–395.
  • Hartwell, L. H., and T. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Hofmann, J. F. X., and D. Beach. 1994. cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J. 13:425–434.
  • Howell, E. A., M. A. McAlear, D. Rose, and C. Holm. 1994. CDC44: a putative nucleotide-binding protein required for cell cycle progression that has homology to subunits of replication factor C. Mol. Cell. Biol. 14:255–267.
  • Jansen, R., D. Tollervey, and E. C. Hurt. 1993. A U3 snoRNP protein with homology to splicing factor PRP4 and Gβ domains is required for ribosomal RNA processing. EMBO J. 12:2549–2558.
  • Johnston, L. H., and N. F. Lowndes. 1992. Cell cycle control of DNA synthesis in budding yeast. Nucleic Acids Res. 20:2403–2410.
  • Kelly, T. J., G. S. Martin, S. L. Forsburg, R. J. Stephen, A. Russo, and P. Nurse. 1993. The fission yeast cdc18+ gene product couples S phase to start and mitosis. Cell 74:371–382.
  • Kelman, Z., and M. O’Donnell. 1994. DNA replication: enzymology and mechanisms. Curr. Opin. Genet. Dev. 4:185–195.
  • Koshland, D., J. C. Kent, and L. H. Hartwell. 1985. Genetic analysis of the mitotic transmission of minichromosomes. Cell 40:393–403.
  • Kranz, J. E., and C. Holm. 1990. Cloning by function: an alternative approach for identifying yeast homologs of genes from other organisms. Proc. Natl. Acad. Sci. USA 87:6629–6633.
  • Longhese, M. P., L. Jovine, P. Plevani, and G. Lucchini. 1993. Conditional mutations in the yeast DNA primase genes affect different aspects of DNA metabolism and interactions in the DNA polymerase α-primase complex. Genetics 133:183–191.
  • Longhese, M. P., P. Plevani, and G. Lucchini. 1994. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol. 14:7884–7890.
  • Lucchini, G., S. Francesconi, M. Foiani, G. Badaracco, and P. Plevani. 1987. The yeast DNA polymerase-primase complex: cloning of PRI1, a single essential gene related to DNA primase activity. EMBO J. 6:737–742.
  • Lucchini, G., M. Muzi Falconi, A. Pizzagalli, A. Aguilera, A. Klein, and P. Plevani. 1990. Nucleotide sequence and characterization of temperature sensitive pol1 mutants of Saccharomyces cerevisiae. Gene 90:99–104.
  • Lydall, D., and T. Weinert. 1995. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270:1488–1491.
  • Marini, F., A. Pellicioli, G. Lucchini, P. Plevani, D. F. Stern, and M. Foiani. A new yeast DNA primase mutant unable to delay entry and progression through S phase in response to DNA damage. Submitted for publication.
  • Mitchell, D. A., T. K. Marshall, and R. J. Deschenes. 1993. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast. Yeast 9:715–723.
  • Miyazawa, H., M. Izumi, S. Tada, R. Takada, M. Masutani, M. Ui, and F. Hanaoka. 1993. Molecular cloning of the cDNAs for the four subunits of mouse DNA polymerase α-primase complex and their gene expression during cell proliferation and the cell cycle. J. Biol. Chem. 269:8111–8122.
  • Murakami, H., and H. Okayama. 1995. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature (London) 374:817–819.
  • Murakami, Y., and J. Hurwitz. 1993. DNA polymerase α stimulates the ATP-dependent binding of simian virus tumor T antigen to the SV40 origin of replication. J. Biol. Chem. 268:11018–11027.
  • Muzi Falconi, M., A. Piseri, M. Ferrari, G. Lucchini, P. Plevani, and M. Foiani. 1993. De novo synthesis of budding yeast DNA polymerase α and POL1 transcription at the G1/S boundary are not required for entrance into S phase. Proc. Natl. Acad. Sci. USA 90:10519–10523.
  • Navas, T. A., Z. Zhou, and S. Elledge. 1995. DNA polymerase ε links the DNA replication machinery to the S phase checkpoint. Cell 80:29–39.
  • Nurse, P. 1994. Ordering S phase and M phase in the cell cycle. Cell 79:547–550.
  • Paulovich, A. G., and L. H. Hartwell. 1995. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82:841–847.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative transformation in yeast. Methods Enzymol. 194:281–301.
  • Saka, Y., P. Fantes, T. Sutani, C. McInerny, J. Creanor, and M. Yanagida. 1994. Fission yeast cut5 links nuclear chromatin and M phase regulator in the replication checkpoint control. EMBO J. 13:5319–5329.
  • Santocanale, C., M. Foiani, G. Lucchini, and P. Plevani. 1993. The isolated 48,000 dalton subunit of yeast DNA primase is sufficient for RNA primer synthesis. J. Biol. Chem. 268:1343–1348.
  • Santocanale, C., F. Locati, M. Muzi Falconi, A. Piseri, B. Y. Tseng, G. Lucchini, and P. Plevani. 1992. Overproduction and functional analysis of DNA primase subunits from yeast and mouse. Gene 113:199–205.
  • Santocanale, C., H. Neecke, M. P. Longhese, G. Lucchini, and P. Plevani. 1995. Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression. J. Mol. Biol. 254:595–607.
  • Schiestl, R. H., P. Reynolds, S. Prakash, and L. Prakash. 1989. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol. Cell. Biol. 9:1882–1896.
  • Siede, W., A. S. Friedberg, and E. C. Friedberg. 1993. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:7985–7989.
  • Stadlbauer, F., A. Brueckner, C. Rehfuess, C. Eckerskorn, F. Lottspeich, V. Forster, B. Y. Tseng, and H.-P. Nasheuer. 1994. DNA replication in vitro by recombinant DNA polymerase α-primase. Eur. J. Biochem. 222:781–793.
  • Stillman, B. 1994. Smart machines at the DNA replication fork. Cell 78:725–728.
  • Sugino, A. 1995. Yeast DNA polymerases and their role at the replication fork. Trends Biochem. Sci. 20:319–323.
  • Waga, S., and B. Stillman. 1994. Anatomy of a DNA replication fork revealed by reconstitution ofSV40 DNA replication in vitro. Nature (London) 369:207–212.
  • Wang, T. A., and J. J. Lee. 1995. Eukaryotic DNA replication. Curr. Opin. Cell Biol. 7:414–420.
  • Wang, T. S. F. 1991. Eukaryotic DNA polymerases. Annu. Rev. Biochem. 60:513–552.
  • Weinert, T. A., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322.
  • Weinert, T. A., and L. H. Hartwell. 1993. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134:63–80.
  • Weinert, T. A., G. L. Kiser, and L. H. Hartwell. 1994. Mitotic checkpoints in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–665.
  • Wimmer, C., V. Doye, P. Grandi, U. Nehrbass, and E. Hurt. 1992. A new subclass of nucleoporins that functionally interact with nuclear pore protein NSP1. EMBO J. 11:5051–5061.
  • Zheng, P., D. S. Fay, J. Burton, H. Xiao, J. L. Pinkham, and D. F. Stern. 1993. SPK1 is an essential S-phase-specific gene of Saccharomyces cerevisiae that encodes a nuclear serine/threonine/tyrosine kinase. Mol. Cell. Biol. 13:5829–5842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.