18
Views
80
CrossRef citations to date
0
Altmetric
Research Article

Interaction of the Interferon-Induced PKR Protein Kinase with Inhibitory Proteins P58IPK and Vaccinia Virus K3L Is Mediated by Unique Domains: Implications for Kinase Regulation

, , &
Pages 4172-4181 | Received 05 Mar 1996, Accepted 09 May 1996, Published online: 29 Mar 2023

REFERENCES

  • Aprelikova, O., Y. Xiong, and E. T. Liu. 1995. Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase. J. Biol. Chem. 270:18195–18197.
  • Barber, G. N., S. Thompson, T.-G. Lee, T. Strom, A. Daveau, and M. G. Katze. 1994. The 58KDa inhibitor of the interferon-induced dsRNA activated protein kinase (PKR) is a TPR protein with oncogenic properties. Proc. Natl. Acad. Sci. USA 91:4278–4282.
  • Barber, G. N., J. Tomita, M. S. Garfinkel, A. G. Hovanessian, E. Meurs, and M. G. Katze. 1992. Detection of protein kinase homologues and viral RNA binding domains utilizing polyclonal antiserum prepared against a baculovi- rus expressed dsRNA activated 68,000 dalton protein kinase. Virology 191:670–679.
  • Barber, G. N., J. Tomita, A. G. Hovanessian, E. Meurs, and M. G. Katze. 1991. Functional expression and characterization of the interferon-induced double-stranded RNA activated P68 protein kinase from Escherichia coli. Biochemistry 30:10356–10361.
  • Barber, G. N., M. Wambach, S. Thompson, R. Jagus, and M. G. Katze. 1995. PKR protein kinase mutants lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation. Mol. Cell. Biol. 15:3138–3146.
  • Bartel, P. L., C.-T. Chien, R. Sternglanz, and S. Fields. 1993. Using the two-hybrid system to detect protein-protein interactions, p. 153–179. In D. A. Hartley (ed.), Cellular interactions in development: a practical approach. Oxford University Press, Oxford.
  • Beattie, E., E. Paoletti, and J. Tartaglia. 1995. Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L- and E3L-mutant viruses. Virology 210:254–263.
  • Beattie, E., J. Tartaglia, and E. Paoletti. 1991. Vaccinia virus-encoded eIF-2 alpha homolog abrogates the antiviral effect of interferon. Virology 183:419–422.
  • Bossemeyer, D. 1994. The glycine-rich sequence of protein kinases: a multifunctional element. Trends Biochem. Sci. 19:201–205.
  • Bossemeyer, D. 1995. Protein kinases—structure and function. FEBS. Lett. 369:57–61.
  • Cabanillas, F., S. Pathak, J. Trujillo, J. Manning, R. Katz, P. McLaughlin, W. S. Velasquez, F. B. Hagemeister, A. Goodacre, A. Cork, J. J. Butler, and E. J. Freireich. 1988. Frequent non-random chromosome abnormalities in 27 patients with untreated large cell lymphoma and immunoblastic lymphoma. Cancer Res. 48:5557–5564.
  • Cao, J., and A. P. Geballe. 1994. Mutational analysis of the translational signal in the human cytomegalovirus gpUL4 (gp48) transcript leader by retroviral infection. Virology 205:151–160.
  • Carroll, K., O. Elroy-Stein, R. Moss, and R. Jagus. 1993. Recombinant vaccinia virus K3L gene product prevents activation of dsRNA dependent eIF 2 kinase. J. Biol. Chem. 268:12837–12842.
  • Chang, H.-W., J. C. Watson, and B. L. Jacobs. 1992. The E3L gene of vaccinia virus encodes and inhibition of the interferon induced, dsRNA dependent protein kinase. Proc. Natl. Acad. Sci. USA 89:4825–4829.
  • Chen, J., J. Pal, M. S. Throop, L. Gehrke, I. Kuo, J. K. Pal, M. Brodsky, and I. M. London. 1991. Cloning of the cDNA of the heme-regulated eukaryotic initiation factor 2α (eIF-2α) kinase of rabbit reticulocytes: homology to yeast GCN2 protein kinase and human double-stranded-RNA-dependent eIF2-α kinase. Proc. Natl. Acad. Sci. USA 88:7729–7733.
  • Chen, P. L., Y. Ueng, T. Durfee, K.-C. Chen, T. Yang-Feng, and W.-H. Lee. 1995. Identification of a human homologue of yeast nuc2 which interacts with the retinoblastoma protein in a specific manner. Cell Growth Differ. 6:199–210.
  • Chong, K. L., K. Schappert, E. Meurs, F. Feng, T. F. Donahue, J. D. Friesen, A. G. Hovanessian, and B. R. G. Williams. 1992. Human P68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11:1553–1562.
  • Cosentino, G. P., S. Venkatesan, F. C. Serluca, S. R. Green, M. B. Mathews, and N. Sonenberg. 1995. Double-stranded-RNA-dependent protein kinase and TAR RNA-binding protein form homo- and heterodimers in vivo. Proc. Natl. Acad. Sci. USA 92:9445–9449.
  • Draetta, G. 1990. Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Trends Biochem. Sci. 15:378–383.
  • Estojak, J., R. Brent, and E. A. Golemis. 1995. Correlation of two-hybrid affinity data with in vitro measurements. Mol. Cell. Biol. 15:5820–5829.
  • Fields, S., and O. Song. 1989. A novel genetic system to detect proteinprotein interactions. Nature (London) 340:245–246.
  • Galabru, J., and A. G. Hovanessian. 1987. Autophosphorylation of the protein kinase dependent on double-stranded RNA. J. Biol. Chem. 262:15538–15544.
  • Gale, M., and M. Katze. 1996. Unpublished data.
  • Geballe, A. P., and E. S. Mocarski. 1988. Translational control of cytomegalovirus gene expression is mediated by upstream AUG codons. J. Virol. 62:3334–3340.
  • Goebl, M., and M. Yanagida. 1991. The TPR snap helix: a novel pretein repeat motif from mitosis to transcription. Trends Biochem. Sci. 16:173–177.
  • Green, S. R., and M. B. Mathews. 1992. Two RNA binding motifs in the double-stranded RNA activated protein kinase, DAI. Genes Dev. 6:2478–2490.
  • Guan, K.-L., C. W. Jenkins, Y. Li, M. A. Nichols, X. Wu, C. L. O’Keefe, A. G. Matera, and Y. Xiong. 1994. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 8:2939–2952.
  • Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin- dependent kinases. Cell 75:805–816.
  • Hershey, J. W. B. 1991. Translational control in mammalian cells. Annu. Rev. Biochem. 60:717–755.
  • Hirano, T., N. Kinoshita, M. Morikawa, and M. Yanagida. 1990. Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc21. Cell 60:319–328.
  • Huang, S., W. Hendriks, A. Althage, S. Hemmi, H. Bluethmann, R. Kamijo, J. Vilcek, R. M. Zinkernagel, and M. Aguet. 1993. Immune response in mice that lack the interferon-γ receptor. Science 259:1742–1745.
  • Icely, P. L., P. Gros, J. J. M. Bergeron, A. Devault, D. E. H. Afar, and J. C. Bell. 1991. TIK, a novel serine/threonine kinase, is recognized by antibodies directed against phosphotyrosine. J. Biol. Chem. 266:16073–16077.
  • Imani, F., and B. L. Jacobs. 1988. Inhibitory activity for the interferon- induced protein kinase is associated with the reovirus serotype 1 sigma 3 protein. Proc. Natl. Acad. Sci. USA 85:7887–7891.
  • Iwabachi, K., B. Li, P. Bartel, and S. Fields. 1996. Use of the two-hybrid system to identify the domain of P53 involved in oligomerization. Oncogene 8:1693–1696.
  • Katze, M. G. 1992. The war against the interferon-induced dsRNA activated protein kinase: can virus win? J. Interferon Res. 12:241–248.
  • Katze, M. G. 1993. Games viruses play: a strategic initiative against the interferon-induced dsRNA activated 68,000 Mr protein kinase. Semin. Virol. 4:259–268.
  • Katze, M. G. 1995. Regulation of the interferon induced-PKR: can viruses cope? Trends Microbiol. 3:75–78.
  • Katze, M. G., D. DeCorato, B. Safer, J. Galabru, and A. G. Hovanessian. 1987. Adenovirus VAI RNA complexes with the 68,000 Mr protein kinase to regulate its autophosphorylation and activity. EMBO J. 6:689–697.
  • Katze, M. G., J. Tomita, T. Black, R. M. Krug, B. Safer, and A. G. Hovanessian. 1988. Influenza virus regulates protein synthesis during infection by repressing the autophosphorylation and activity of the cellular 68,000-Mr protein kinase. J. Virol. 62:3710–3717.
  • Katze, M. G., M. Wambach, M.-L. Wong, M. S. Garfinkel, E. Meurs, K. L. Chong, B. R. G. Williams, A. G. Hovanessian, and G. N. Barber. 1991. Functional expression of interferon-induced, double-stranded RNA-acti- vated 68,000-Mr protein kinase in a cell-free system. Mol. Cell. Biol. 11:5497–5505.
  • Kishore, G. M., and D. M. Shaw. 1988. Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627–663.
  • Koromilas, A. E., S. Roy, G. N. Barber, M. G. Katze, and N. Sonneberg. 1992. Malignant transformation of the IFN-inducible dsRNA dependent protein kinase. Science 257:1685–1689.
  • Korth, M. J., C. N. Lyons, M. Wambach, and M. G. Katze. 1996. Cloning, expression, and cellular localization of the oncogenic 58-kDa inhibitor of the RNA-activated human and mouse protein kinase. Gene 170:181–188.
  • Kumar, A., J. Haque, J. Lacoste, J. Hiscott, and B. R. G. Williams. 1994. The dsRNA-dependent protein kinase, PKR, activates transcription factor NF-kB by phosphorylating IkB. Proc. Natl. Acad. Sci. USA 91:6288–6292.
  • Lamb, J. R., W. A. Michaud, R. S. Sikorski, and P. A. Hieter. 1994. Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. EMBO J. 13:4321–4328.
  • Lamb, J. R., S. Tugendreich, and P. Hieter. 1995. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem. Sci. 20:257–259.
  • Langland, J. O., and B. L. Jacobs. 1992. Cytosolic double-stranded RNA- dependent protein kinase is likely a dimer of partially phosphorylated Mr566,000 subunits. J. Biol. Chem. 267:10729–10736.
  • Laurent, A. G., B. Krust, J. Galabru, J. Svab, and A. G. Hovanessian. 1985. Monoclonal antibodies to interferon induced 68,000 Mr protein and their use for the detection of double-stranded RNA dependent protein kinase in human cells. Proc. Natl. Acad. Sci. USA 82:4341–4345.
  • Lee, S. B., and M. Esteban. 1994. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199:491–496.
  • Lee, T. G., N. Tang, S. Thompson, J. Miller, and M. G. Katze. 1994. The 58,000-dalton cellular inhibitor of the interferon-induced double-stranded RNA-activated protein kinase (PKR) is a member of the TPR repeat family of proteins. Mol. Cell. Biol. 14:2331–2342.
  • Lee, T. G., J. Tomita, A. G. Hovanessian, and M. G. Katze. 1990. Purification and partial characterization of a cellular inhibitor of the interferon-induced 68,000 Mr protein kinase from influenza virus-infected cells. Proc. Natl. Acad. Sci. USA 87:6208–6212.
  • Lee, T. G., J. Tomita, A. G. Hovanessian, and M. G. Katze. 1992. Characterization and regulation of the 58,000-dalton cellular inhibitor of the interferon-induced, dsRNA-activated protein kinase. J. Biol. Chem. 267:14238–14243.
  • Li, B., and S. Fields. 1993. Identification of mutations in P53 that affect its binding to SV40 T antigen by using the yeast two-hybrid system. FASEB J. 7:957–963.
  • Lu, P.-K., S. A. Osmani, and A. R. Means. 1993. Properties and regulation of the cell cycle-specific NIMA protein kinase of Aspergillus nidulans. J. Biol. Chem. 268:8769–8776.
  • Luo, Y., J. Hurwitz, and J. Massague. 1995. Cell-cycle inhibition by independent CDK and PCNA binding domains in p21Cip1. Nature (London) 375:159–162.
  • Mathews, M. B. 1996. Personal communication.
  • McCormack, S. J., and C. E. Samuel. 1995. Mechanism of interferon action: RNA-binding activity of full-length and R-domain forms of the RNA-de-pendent protein kinase PKR—determination of KD values for VAI and TAR RNAs. Virology 206:511–519.
  • McMillan, N. A. J., R. F. Chun, D. P. Siderovski, J. Galabru, W. M. Toone, C. E. Samuel, T. W. Mak, A. G. Hovanessian, K.-T. Jeang, and B. R. G. Williams. 1995. HIV-1 Tat directly interacts with the interferon-induced, double-stranded RNA-dependent kinase, PKR. Virology 213:413–424.
  • Merrick, W. C. 1992. Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev. 56:291–315.
  • Meurs, E., K. L. Chong, J. Galabru, N. Thomas, I. Kerr, B. R. G. Williams, and A. G. Hovanessian. 1990. Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62:379–390.
  • Meurs, E. F., J. Galabru, G. N. Barber, M. G. Katze, and A. G. Hovanessian. 1993. Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 90:232–236.
  • Patel, R. C., P. Stanton, N. M. J. McMillan, B. R. G. Williams, and G. C. Sen. 1995. The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in vivo. Proc. Natl. Acad. Sci. USA 92:8283–8287.
  • Pelech, S. L., and J. S. Sanghera. 1992. Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem. Sci. 17:232–237.
  • Polyak, K., M.-H. Lee, H. Erdjument-Bromage, A. Koff, J. M. Roberts, P. Tempst, and J. Massague. 1994. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a protein mediator of extracellular antimitogenic signals. Cell 78:59–66.
  • Polyak, S. J., N. Tang, M. Wambach, G. N. Barber, and M. G. Katze. 1996. The p58 cellular inhibitor complexes with the interferon-induced, doublestranded RNA-dependent protein kinase, PKR, to regulate its autophosphorylation and activity. J. Biol. Chem. 271:1702–1707.
  • Ramirez, M., R. C. Wek, and A. G. Hinnebusch. 1991. Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol. Cell Biol. 11:3027–3036.
  • Rhoads, R. E. 1993. Regulation of eukaryotic protein synthesis by initiation factors. J. Biol. Chem. 268:3017–3020.
  • Roy, S., M. G. Katze, N. T. Parkin, I. Edery, A. G. Hovanessian, and N. Sonenberg. 1990. Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1 tat gene product. Science 247:1216–1219.
  • Samuel, C. E. 1991. Antiviral actions of interferon interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology 183:1–11.
  • Silver, P. A., and J. C. Way. 1993. Eukaryotic DnaJ homologs and the specificity of Hsp70 activity. Cell 74:5–6.
  • Smith, D. B., and K. S. Johnson. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione-S-transferase. Gene 67:31–40.
  • Tang, N., C. Y. Ho, and M. G. Katze. The 58 kDa inhibitor of the dsRNA- dependent protein kinase (PKR) requires the TPR6 and DnaJ motifs to stimulate protein synthesis in vivo. Submitted for publication.
  • Taylor, S. S., D. R. Knighton, J. Zheng, J. M. Sowadski, C. S. Gibbs, and M. J. Zoller. 1993. A template for the protein kinase family. Trends Bio- chem. Sci. 18:84–89.
  • Thomis, D. C., and C. E. Samuel. 1993. Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J. Virol. 67:7695–7700.
  • Tzamarias, D., and K. Struhl. 1995. Distinct TPR motifs of Cyc8 are involved in recruiting the Cyc8-Tup1 corepressor complex to differentially regulated promoters. Genes Dev. 9:821–831.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.