2
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Loss of Sustained Fus3p Kinase Activity and the G1 Arrest Response in Cells Expressing an Inappropriate Pheromone Receptor

&
Pages 4478-4485 | Received 27 Feb 1996, Accepted 23 May 1996, Published online: 29 Mar 2023

REFERENCES

  • Chan, R. K., and C. A. Otte. 1982. Isolation and genetic analysis of Saccha- romyces cerevisiae mutants supersensitive to G1 arrest by a factor and a factor pheromones. Mol. Cell. Biol. 2:11–20.
  • Chang, F., and I. Herskowitz. 1990. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63:999–1011.
  • Chang, F., and I. Herskowitz. 1992. Phosphorylation of FAR1 in response to α-factor: a possible requirement for cell-cycle arrest. Mol. Biol. Cell 3:445–450.
  • Choi, K. Y., B. Satterberg, D. M. Lyons, and E. A. Elion. 1994. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78:499–512.
  • Cole, G. M., D. E. Stone, and S. I. Reed. 1990. Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway. Mol. Cell. Biol. 10:510–517.
  • Couve, A., and J. P. Hirsch. Unpublished data.
  • Cross, F. R. 1990. The DAF2-2 mutation, a dominant inhibitor of the STE4 step in the α-factor signalling pathway of Saccharomyces cerevisiae MATa cells. Genetics 126:301–308.
  • Cross, F. R., and A. H. Tinkelenberg. 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875–883.
  • Daugherty, B. L., J. A. DeMartin, M. F. Law, D. W. Kawka, and M. G. E. Singer II. 1991. Polymerase chain reaction facilitates the cloning, CDR- grafting, and rapid expression of a murine monoclonal antibody directed against the CD18 component of leukocyte integrins. Nucleic Acids Res. 19:2471–2476.
  • Dietzel, C., and J. Kurjan. 1987. Pheromonal regulation and sequence of the Saccharomyces cerevisiae SST2 gene: a model for desensitization to pheromone. Mol. Cell. Biol. 7:4169–4177.
  • Dirick, L., and K. Nasmyth. 1991. Positive feedback in the activation of G1 cyclins in yeast. Nature (London) 351:754–757.
  • Elion, E. A., J. A. Brill, and G. R. Fink. 1991. FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc. Natl. Acad. Sci. USA 88:9392–9396.
  • Elion, E. A., B. Satterberg, and J. E. Kranz. 1993. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1. Mol. Biol. Cell 4:495–510.
  • Errede, B., and G. Ammerer. 1989. STE12, a protein involved in cell-type- specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev. 3:1349–1361.
  • Errede, B., A. Gartner, Z. Zhou, K. Nasmyth, and G. Ammerer. 1993. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature (London) 362:261–264.
  • Errede, B., and D. E. Levin. 1993. A conserved kinase cascade for MAP kinase activation in yeast. Curr. Opin. Cell Biol. 5:254–260.
  • Evan, G. I., G. K. Lewis, G. Ramsay, and J. M. Bishop. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616.
  • Gartner, A., K. Nasmyth, and G. Ammerer. 1992. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6:1280–1292.
  • Gotoh, Y., E. Nishida, T. Yamashita, M. Hoshi, M. Kawakami, and H. Sakai. 1990. Microtubule-associated-protein (MAP) kinase activated by nerve growth factor and epidermal growth factor in PC12 cells. Eur. J. Biochem. 193:661–669.
  • Grishin, A. V., J. L. Weiner, and K. J. Blumer. 1994. Control of adaptation to mating pheromone by G protein β subunits of Saccharomyces cerevisiae. Genetics 138:1081–1092.
  • Hasson, M. S., D. Blinder, J. Thorner, and D. D. Jenness. 1994. Mutational activation of the STE5 gene product bypasses the requirement for G protein β and γ subunits in the yeast pheromone response pathway. Mol. Cell. Biol. 14:1054–1065.
  • Hausdorff, W. P., M. G. Caron, and R. J. Lefkowitz. 1990. Turning off the signal: desensitization of β-adrenergic receptor function. FASEB J. 4:2881–2889.
  • Heasley, L. E., and G. L. Johnson. 1992. The β-PDGF receptor induces neuronal differentiation of PC12 cells. Mol. Biol. Cell 3:545–553.
  • Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187–197.
  • Hill, C. S., and R. Treisman. 1995. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80:199–211.
  • Hirsch, J. P., and F. R. Cross. 1993. The pheromone receptors inhibit the pheromone response pathway in Saccharomyces cerevisiae by a process that is independent of their associated Ga protein. Genetics 135:943–953.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells with alkali cations. J. Bacteriol. 153:163–168.
  • Kranz, J. E., B. Satterberg, and E. A. Elion. 1994. The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5. Genes Dev. 8:313–327.
  • Leberer, E., D. Dignard, D. Harcus, D. Y. Thomas, and M. Whiteway. 1992. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein βγ subunits to downstream signalling components. EMBO J. 11:4815–4824.
  • Leberer, E., D. Dignard, L. Hougan, D. Y. Thomas, and M. Whiteway. 1992. Dominant-negative mutants of a yeast G-protein β subunit identify two functional regions involved in pheromone signalling. EMBO J. 11:4805–4813.
  • Lefkowitz, R. J. 1993. G protein-coupled receptor kinases. Cell 74:409–412.
  • Lehrach, H., D. Diamond, J. M. Wozney, and H. Boedtker. 1977. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751.
  • Ma, D., J. G. Cook, and J. Thorner. 1995. Phosphorylation and localization of Kss1, a MAP kinase of the Saccharomyces cerevisiae pheromone response pathway. Mol. Biol. Cell 6:889–909.
  • Marshall, C. J. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • McCaffrey, G., F. J. Clay, K. Kelsay, and G. F. Sprague, Jr. 1987. Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:2680–2690.
  • McKinney, J. D., and F. R. Cross. 1995. FAR1 and the G1 phase specificity of cell cycle arrest by mating factor in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2509–2516.
  • Michaelis, S., and I. Herskowitz. 1988. The a-factor pheromone of Saccha- romyces cerevisiae is essential for mating. Mol. Cell. Biol. 8:1309–1318.
  • Nguyen, T. T., J. Scimeca, C. Filloux, P. Peraldi, J. Carpentier, and E. Van Obberghen. 1993. Co-regulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells. J. Biol. Chem. 268:9803–9810.
  • Nomoto, S., N. Nakayama, K. Arai, and K. Matsumoto. 1990. Regulation of the yeast pheromone response pathway by G protein subunits. EMBO J. 9:691–696.
  • Peter, M., A. Gartner, J. Horecka, G. Ammerer, and I. Herskowitz. 1993. FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73:747–760.
  • Peter, M., and I. Herskowitz. 1994. Direct inhibition of the yeast cyclin- dependent kinase Cdc28-Cln by Far1. Science 265:1228–1231.
  • Printen, J. A., and G. F. Sprague, Jr. 1994. Protein-protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics 138:609–619.
  • Qiu, M., and S. H. Green. 1992. PC12 cell neuronal differentiation is associated with prolonged p21ras activity and consequent prolonged ERK activity. Neuron 9:705–717.
  • Ramer, S. W., and R. W. Davis. 1993. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:452–456.
  • Schultz, L. D., and J. D. Friesen. 1983. Nucleotide sequence of the tcm1 gene (ribosomal protein L3) of Saccharomyces cerevisiae. J. Bacteriol. 155:8–14.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1989. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Plainview, N.Y.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Simon, M., C. De Virgilio, B. Souza, J. R. Pringle, A. Abo, and S. I. Reed. 1995. Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature (London) 376:702–705.
  • Sprague, G. F., Jr., and J. W. Thorner. 1992. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae, p. 657–744. In E. W. Jones, J. R. Pringle, and J. R. Broach (ed.), The Molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Traverse, S., N. Gomez, H. Paterson, C. Marshall, and P. Cohen. 1992. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Biochem. J. 288:351–355.
  • Tyers, M., and B. Futcher. 1993. Far1 and Fus3 link the mating pheromone signal transduction pathway to three G1-phase Cdc28 kinase complexes. Mol. Cell. Biol. 13:5659–5669.
  • Whiteway, M., L. Hougan, and D. Y. Thomas. 1990. Overexpression of the STE4 gene leads to mating response in haploid Saccharomyces cerevisiae. Mol. Cell. Biol. 10:217–222.
  • Yuan, Y. O., and S. Fields. 1991. Properties of the DNA-binding domain of the Saccharomyces cerevisiae STE12 protein. Mol. Cell. Biol. 11:5910–5918.
  • Zhao, Z., T. Leung, E. Manser, and L. Lim. 1995. Pheromone signalling in Saccharomyces cerevisiae requires the small GTP-binding protein Cdc42p and its activator CDC24. Mol. Cell. Biol. 15:5246–5257.
  • Zhou, Z., A. Gartner, R. Cade, G. Ammerer, and B. Errede. 1993. Pheromone-induced signal transduction in Saccharomyces cerevisiae requires the sequential function of three protein kinases. Mol. Cell. Biol. 13:2069–2080.
  • Ziman, M., D. Preuss, J. Mulholland, J. M. O’Brien, D. Botstein, and D. I. Johnson. 1993. Subcellular localization of Cdc42p, a Saccharomyces cerevi- siae GTP-binding protein involved in the control of cell polarity. Mol. Biol. Cell 4:1307–1316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.