39
Views
141
CrossRef citations to date
0
Altmetric
Research Article

A Single Tyrosine of the Interleukin-9 (IL-9) Receptor Is Required for STAT Activation, Antiapoptotic Activity, and Growth Regulation by IL-9

, , , , , & show all
Pages 4710-4716 | Received 28 Mar 1996, Accepted 19 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Ausubel, F., R. Brent, R. Kingston, D. Moore, J. Seidman, J. Smith, and K. Struhl. 1995. Current protocols in molecular biology. John Wiley and Sons, New York.
  • Coffer, P., and W. Kruijer. 1995. EGF receptor deletions define a region specifically mediating STAT transcription factor activation. Biochem. Bio-phys. Res. Commun. 210:74–81.
  • Cohen, B., R. Ren, and D. Baltimore. 1995. Modular binding domains in signal transduction proteins. Cell 80:237–248.
  • Damen, J., H. Wakao, A. Miyajima, J. Krosl, R. K. Humphries, R. Cutler, and G. Krystal. 1995. Tyrosine 343 in the erythropoietin receptor positively regulates erythropoietin-induced cell proliferation and STAT5 activation. EMBO J. 14:5557–5568.
  • de Smet, C., S. Courtois, I. Faraoni, C. Lurquin, J.-P. Szikora, O. De Backer, and T. Boon. 1995. Involvement of two Ets binding sites in the transcriptional activation of the MAGE1 gene. Immunogenetics 42:282–290.
  • Druez, C., P. Coulie, C. Uyttenhove, and J. Van Snick. 1990. Functional and biochemical characterization of mouse P40/IL-9 receptors. J. Immunol. 145:2494–2499.
  • Fujii, H., Y. Nakagawa, U. Schindler, A. Kawahara, H. Mori, F. Gouilleux, B. Groner, J. Ihle, Y. Minami, T. Miyazaki, and T. Taniguchi. 1995. Activation of Stat5 by interleukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor β chain but is not essential for the proliferative signal transmission. Proc. Natl. Acad. Sci. USA 92:5482–5486.
  • Greenlund, A. C., M. Farrar, B. L. Viviano, and R. D. Schreiber. 1994. Ligand-induced IFN7 receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91). EMBO J. 13:1591–1600.
  • Gruss, H.-J., M. Brach, H.-G. Drexler, K. Bross, and F. Herrmann. 1992. Interleukin 9 is expressed by primary and cultured Hodgkin and Reed-Sternberg cells. Cancer Res. 52:1026–1031.
  • Harada, N., G. Yang, A. Miyajima, and M. Howard. 1992. Identification of an essential region for growth signal transduction in the cytoplasmic domain of the human interleukin-4 receptor. J. Biol. Chem. 267:22752–22758.
  • Hou, J., U. Schindler, W. Henzel, T. C. Ho, M. Brasseur, and S. McKnight. 1994. An interleukin-4-induced transcription factor: IL-4 Stat. Science 265:1701–1706.
  • Hou, J., U. Schindler, W. Henzel, S. Wong, and S. McKnight. 1995. Identification and purification of human Stat proteins activated in response to interleukin-2. Immunity 2:321–329.
  • Houssiau, F., J.-C. Renauld, M. Stevens, F. Lehmann, B. Lethe, P. G. Coulie, and J. Van Snick. 1993. Human T cell lines and clones respond to IL-9. J. Immunol. 150:2634–2640.
  • Ihle, J., and I. Kerr. 1995. Jaks and Stats in signalling by the cytokine receptor superfamily. Trends Genet. 11:69–74.
  • Jacobson, N. G., S. J. Szabo, R. M. Weber-Nordt, Z. Zhong, R. D. Schreiber, J. E. Darnell, and K. M. Murphy. 1995. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat)3 and Stat4. J. Exp. Med. 181:1755–1762.
  • Keegan, A., K. Nelms, L. M. Wang, J. Pierce, and W. Paul. 1994. Interleukin 4 receptor: signaling mechanisms. Immunol. Today 15:423–432.
  • Kimura, Y., T. Takeshita, M. Kondo, N. Ishii, M. Nakamura, J. Van Snick, and K. Sugamura. 1995. Sharing of the IL-2 receptor 7 chain with the functional IL-9 receptor complex. Int. Immunol. 7:115–120.
  • Kirken, R., H. Rui, G. Malabarba, Z. Howard, M. Kawamura, J. O’Shea, and W. Farrar. 1995. Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and Stat5 recruitment by a COOH-terminal region of the IL-2 receptor β-chain. Cytokine 7:689–700.
  • Lebrun, J., S. Ali, V. Goffin, A. Ullrich, and P. Kelly. 1995. A single phos-photyrosine residue of the prolactin receptor is responsible for activation of gene transcription. Proc. Natl. Acad. Sci. USA 92:4031–4035.
  • Lin, J.-X., T.-S. Migone, M. Tsang, M. Friedmann, J. Weatherbee, L. Zhou, A. Yamauchi, E. Bloom, J. Mietz, S. John, and W. Leonard. 1995. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2:331–339.
  • Maisin, D., et al. Unpublished data.
  • Merz, H., F. A. Houssiau, K. Orscheschek, J.-C. Renauld, A. Fliedner, M. Herin, H. Noel, M. Kadin, H. K. Mueller-Hermelink, J. Van Snick, and A. C. Feller. 1991. IL-9 expression in human malignant lymphomas: unique association with Hodgkin’s disease and large cell anaplastic lymphoma. Blood 78:1311–1317.
  • Mizushima, S., and S. Nagata. 1990. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 18:5322.
  • Mui, A., H. Wakao, T. Kinoshita, T. Kitamura, and A. Miyajima. 1996. Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J. 15:2425–2433.
  • Murakami, M., M. Narazaki, M. Hibi, H. Yamata, K. Yasukawa, M. Hamaguchi, T. Taga, and T. Kishimoto. 1991. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. USA 88:11349–11353.
  • Palacios, R., and M. Steinmetz. 1985. IL3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration and generate B lymphocytes in vivo. Cell 41:727–734.
  • Renauld, J.-C., C. Druez, A. Kermouni, F. Houssiau, C. Uyttenhove, E. Van Roost, and J. Van Snick. 1992. Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc. Natl. Acad. Sci. USA 89:5690–5694.
  • Renauld, J.-C., F. Houssiau, J. Louahed, A. Vink, J. Van Snick, and C. Uyttenhove. 1993. Interleukin 9. Adv. Immunol. 54:79–97.
  • Renauld, J.-C., A. Kermouni, A. Vink, J. Louahed, and J. Van Snick. 1995. Interleukin 9 and its receptor: involvement in mast cell differentiation and T cell oncogenesis. J. Leukocyte Biol. 57:353–360.
  • Renauld, J.-C., N. van der Lugt, A. Vink, M. van Roon, C. Godfraind, G. Warnier, H. Merz, A. Feller, A. Berns, and J. Van Snick. 1994. Thymic lymphomas in interleukin 9 transgenic mice. Oncogene 9:1327–1332.
  • Renauld, J.-C., A. Vink, J. Louahed, and J. Van Snick. 1995. IL-9 is a major anti-apoptotic factor for thymic lymphomas. Blood 85:1300–1305.
  • Russel, S., J. Johnston, M. Noguchi, M. Kawamura, C. Bacon, M. Friedmann, M. Berg, D. McVicar, B. Witthuhn, O. Silvennoinen, A. Goldman, F. Schmalstieg, J. Ihle, J. O’Shea, and W. Leonard. 1994. Interaction of IL-2Rβ and γc chains with Jak1 and Jak3: implications for XSCID and XCID. Science 266:1042–1045.
  • Schreiber, E., P. Matthias, M. Muller, and W. Schaffner. 1989. Rapid detection of octamer binding proteins with “mini-extracts”, prepared from a small number of cells. Nucleic Acids Res. 17:6419.
  • Stahl, N., T. Farruggella, T. Boulton, Z. Zhong, J. Darnell, and G. Yancopoulos. 1995. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267:1349–1353.
  • Tanigushi, T. 1995. Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268:251–255.
  • Uyttenhove, C., R. Simpson, and J. Van Snick. 1988. Functional and structural characterization of P40, a mouse glycoprotein with T cell growth factor activity. Proc. Natl. Acad. Sci. USA 85:6934–6938.
  • Vink, A., J.-C. Renauld, G. Warnier, and J. Van Snick. 1993. Interleukin-9 stimulates in vitro growth of mouse thymic lymphomas. Eur. J. Immunol. 23:1134–1138.
  • Wakao, H., F. Gouilleux, and B. Groner. 1994. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 13:2182–2191.
  • Yin, T., S. Keller, F. Quelle, B. Witthuhn, M. L.-S. Tsang, G. Lienhard, J. Ihle, and Y.-C. Yang. 1995. Interleukin-9 induces tyrosine phosphorylation of insulin receptor substrate-1 via JAK tyrosine kinases. J. Biol. Chem. 270:20497–20502.
  • Yin, T., M. L.-S. Tsang, and Y.-C. Yang. 1994. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes. J. Biol. Chem. 269:26614–26617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.