15
Views
119
CrossRef citations to date
0
Altmetric
Research Article

Involvement of the Molecular Chaperone Ydj1 in the Ubiquitin-Dependent Degradation of Short-Lived and Abnormal Proteins in Saccharomyces cerevisiae

, &
Pages 4773-4781 | Received 29 Jan 1996, Accepted 17 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Wiley Interscience, New York.
  • Bachmair, A., D. Finley, and A. Varshavsky. 1986. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.
  • Caplan, A. J., D. M. Cyr, and M. G. Douglas. 1992. Ydj1p facilitates polypep-tide translocation across different intracellular membranes by a conserved mechanism. Cell 71:1143–1155.
  • Chirico, W., M. G. Walter, and G. Blobel. 1988. 70K heat shock related proteins stimulate protein translocation into microsomes. Nature (London) 332:805–810.
  • Ciechanover, A. 1995. The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21.
  • Craig, E. A., B. D. Gambil, and R. J. Nelson. 1993. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57:402–414.
  • Cyr, D. M., T. Langer, and M. G. Douglas. 1994. DnaJ-like proteins: molecular chaperones and specific regulators of hsp70. Trends Biochem. Sci. 19:176–181.
  • Cyr, D. M., X. Lu, and M. G. Douglas. 1992. Regulation of eukaryotic hsp70 function by a dnaJ homolog. J. Biol. Chem. 267:20927–20931.
  • Deshaies, R. J., B. D. Koch, M. Werner-Washburne, E. A. Craig, and R. Schekman. 1988. A subfamily of hsp proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature (London) 332:800–805.
  • Dohmen, R. J., K. Madura, B. Bartel, and A. Varshavsky. 1991. The N-end rule is mediated by the Ubc2 (Rad6) ubiquitin-conjugating enzyme. Proc. Natl. Acad. Sci. USA 88:7351–7355.
  • Figueiredo-Pereira, M. E., K. A. Berg, and S. Wilk. 1994. A new inhibitor of the chymotrypsin-like activity of the multicatalytic proteinase complex (20S proteasome) induces accumulation of ubiquitin-protein conjugates in a neu-ronal cell. J. Neurochem. 63:1578–1581.
  • Georgopoulos, C., and W. J. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9:601–634.
  • Goldberg, A. L. 1995. Functions of the proteasome: the lysis at the end of the tunnel. Science 268:522–523.
  • Goldberg, A. L., and A. C. St. John. 1976. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 45:747–803.
  • Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottes-man, and V. Nikiforov. 1992. Cooperation of groEL/ES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89:10341–10344.
  • Heinemeyer, W., A. Gruhler, V. Mohrle, Y. Mahe, and D. H. Wolf. 1993. PRE2, highly homologous to the human major histocompatibility complex- linked RING10 gene, codes for a yeast proteasome subunit necessary for chymotryptic activity and degradation of ubiquitinated proteins. J. Biol. Chem. 268:5115–5120.
  • Hendricks, J. P., and F.-U. Hartl. 1993. Molecular chaperone functions of heat shock proteins. Annu. Rev. Biochem. 62:349–384.
  • Hershko, A., and A. Ciechanover. 1992. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61:761–807.
  • Hohfeld, J., Y. Minami, and F.-U. Hartl. 1995. Hip, a novel cochaperone involved in the eukaryotic hsc70/hsp40 reaction cycle. Cell 83:589–598.
  • Jentsch, S. 1992. The ubiquitin-conjugation system. Annu. Rev. Genet. 26:179–207.
  • Johnson, E. S., B. Bartel, W. Seufert, and A. Varshavsky. 1992. Ubiquitin as a degradation signal. EMBO J. 11:497–505.
  • Jones, E. W. 1991. Three proteolytic systems in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 266:7963–7966.
  • Kandror, O., L. Busconi, M. Y. Sherman, and A. L. Goldberg. 1994. Rapid degradation of an abnormal protein in Escherichia coli involves the chaper-ones GroEL and GroES. J. Biol. Chem. 269:23575–23582.
  • Knittler, M. R., S. Dirks, and I. G. Haas. 1995. Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chain that are degraded in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 92:1764–1768.
  • Kornitzer, D., B. Raboy, R. G. Kulka, and G. R. Fink. 1994. Regulated degradation of the transcription factor Gcn4. EMBO J. 13:6021–6030.
  • Lee, D. H., and A. L. Goldberg. Unpublished data.
  • Lee, D. H., M. Y. Sherman, and A. L. Goldberg. Unpublished data.
  • Pratt, G., R. Hough, and M. Rechsteiner. 1989. Proteolysis in heat-stressed HeLa cells. J. Biol. Chem. 264:12526–12532.
  • Rechsteiner, M., L. Hoffman, and W. Dubiel. 1993. The multicatalytic and 26S proteases. J. Biol. Chem. 268:6065–6068.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Seufert, W., B. Futcher, and S. Jentsch. 1995. Role of a ubiquitin-conjugat-ing enzyme in degradation of S- and M-phase cyclins. Nature (London) 373:78–81.
  • Seufert, W., and S. Jentsch. 1990. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9:543–550.
  • Sherman, M. Y., and A. L. Goldberg. 1992. Involvement of chaperonin dnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J. 11:71–77.
  • Sherman, M. Y., and A. L. Goldberg. Involvement of molecular chaperones in intracellular breakdown. In U. Feige, R. I. Morimoto, I. Yahara, and B. S. Polla (ed.), Stress-inducible cellular responses, in press. Birkhäuser/Springer.
  • Straus, D. B., W. A. Walter, and C. A. Gross. 1988. Escherichia coli heat shock gene mutants are defective in proteolysis. Genes Dev. 2:1851–1858.
  • Straus, D. B., W. A. Walter, and C. A. Gross. 1990. DnaK, dnaJ and grpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 4:2202–2209.
  • Tilly, K., J. Spence, and C. Georgopoulos. 1989. Modulation of stability of the Escherichia coli heat shock regulatory factor sigma. J. Bacteriol. 171:1585–1589.
  • Varshavsky, A. 1992. The N-end rule. Cell 69:725–735.
  • Wagner, I., H. Arit, L. van Dyck, T. Langer, and W. Neupert. 1994. Molecular chaperones cooperate with pim1 protease in the degradation of mis-folded proteins in mitochondria. EMBO J. 13:5135–5145.
  • Wild, J., E. Altman, T. Yura, and C. A. Gross. 1992. DnaK and DnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev. 6:1165–1172.
  • Yaglom, J. A., A. L. Goldberg, D. Finley, and M. Y. Sherman. 1996. The molecular chaperone Ydj1 is required for the p34cdc28-dependent phosphor-ylation of the cyclin Cln3 that signals its degradation. Mol. Cell. Biol. 16:3679–3684.
  • Zhong, T., and K. T. Arndt. 1993. The yeast Sis1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73:1175–1186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.