25
Views
64
CrossRef citations to date
0
Altmetric
Research Article

Semidominant Mutations in the Yeast Rad51 Protein and Their Relationships with the Srs2 Helicase

, , , &
Pages 4782-4789 | Received 12 Feb 1996, Accepted 18 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Aboussekhra, A., R. Chanet, A. Adjiri, and F. Fabre. 1992. Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol. Cell. Biol. 12:3224–3234.
  • Aboussekhra, A., R. Chanet, Z. Zgaga, C. Cassier-Chauvat, M. Heude, and F. Fabre. 1989. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair—characteristics ofradh mutants and sequence of the gene. Nucleic Acids Res. 17:7211–7219.
  • Basile, G., M. Aker, and R. K. Mortimer. 1992. Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol. Cell. Biol. 12:3235–3246.
  • Benson, F. E., A. Stasiak, and S. C. West. 1994. Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J. 13:5764–5771.
  • Bezzubova, O., A. Shinohara, R. G. Mueller, H. Ogawa, and J.-M. Buerstedde. 1993. A chicken RAD51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucleic Acids Res. 21:1577–1580.
  • Bishop, D. K. 1994. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092.
  • Bishop, D. K., D. Park, L. Xu, and N. Kleckner. 1992. DMC1, a meiosis-specific yeast homolog of E. coli recA required for recombination, synap-tonemal complex formation, and cell cycle progression. Cell 69:439–456.
  • Cheng, R., T. J. Baker, C. E. Cords, and R. J. Radloff. 1993. mei-3, a recombination and repair gene of Neurospora crassa, encodes a recA-like protein. Mutat. Res. 294:223–234.
  • Donovan, J. W., G. T. Milne, and D. T. Weaver. 1994. Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair. Genes Dev. 8:2552–2562.
  • Game, J. C. 1983. Radiation sensitive mutants and repair in yeast, p. 109–137. In J. F. T. Spencer, D. Spencer, and A. R. W. Smith (ed.), Yeast genetics: fundamental and applied aspects. Springer-Verlag, New York.
  • Hays, S. L., A. A. Firmenich, and P. Berg. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55 and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92:6925–6929.
  • Heude, M., R. Chanet, and F. Fabre. 1995. Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation. Mol. Gen. Genet. 248:59–68.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jang, Y. K., Y. H. Jin, E. M. Kim, F. Fabre, S. H. Hong, and S. D. Park. 1994. Cloning and sequence analysis of rhp51+, a Schizosaccharomyces pombe homolog of the Saccharomyces cerevisiae RAD51 gene. Gene 141:207–211.
  • Johnson, R. D., and L. S. Symington. 1995. Functional differences and interactions among the putative RecA homologs Rad51, Rad55, and Rad57. Mol. Cell. Biol. 15:4843–4850.
  • Kans, J. A., and R. K. Mortimer. 1991. Nucleotide sequence of the RAD57 gene of Saccharomyces cerevisiae. Gene 105:139–140.
  • Kaytor, M. D., M. Nguyen, and D. M. Livingston. 1995. The complexity of the interaction between RAD52 and SRS2. Genetics 140:1440–1441.
  • Kowalczykowski, S. C., D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58:401–465.
  • Kunz, B. A., and R. H. Haynes. 1981. Phenomenology and genetic control of mitotic recombination in yeast. Annu. Rev. Genet. 15:57–89.
  • Lovett, S. T. 1994. Sequence of the RAD55 gene of Saccharomyces cerevisiae: similarity of Rad55 to prokaryotic RecA and other RecA-like proteins. Gene 141:103–106.
  • Maeshima, K., K. Morimatsu, A. Shinohara, and T. Horii. 1995. RAD51 homologues in Xenopus laevis: two distinct genes are highly expressed in ovary and testis. Gene 160:195–200.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Milne, G. T., T. Ho, and D. T. Weaver. 1995. Modulation of Saccharomyces cerevisiae double-strand break repair by SRS2 and RAD51. Genetics 139:1189–1199.
  • Milne, G. T., and D. T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7:1755–1765.
  • Morel, P., J. A. Hejna, S. D. Ehrlich, and E. Cassuto. 1993. Antipairing and strand transferase activities of E. coli helicase II (UvrD). Nucleic Acids Res. 21:3205–3209.
  • Morita, T., Y. Yoshimura, A. Yamamoto, K. Murata, M. Mori, H. Yamamoto, and A. Matsushiro. 1993. A mouse homolog of the Escherichia coli recA and Saccharomyces cerevisiae RAD51 genes. Proc. Natl. Acad. Sci. USA 90:6577–6580.
  • Ogawa, T., X. Yu, A. Shinohara, and E. H. Egelman. 1993. Similarity of the yeast Rad51 filament to the bacterial RecA filament. Science 259:1896–1899.
  • Pittler, S. J., and W. Baehr. 1991. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase β-subunit gene of the rd mouse. Proc. Natl. Acad. Sci. USA 88:8322–8326.
  • Rattray, A. J., and L. S. Symington. 1995. Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics 139:45–56.
  • Rehrauer, W. M., and S. C. Kowalczykowski. 1993. Alteration of the nucleoside triphosphate (NTP) catalytic domain within Escherichia coli recA protein attenuates NTP hydrolysis but not joint molecule formation. J. Biol. Chem. 268:1292–1297.
  • Rong, L., and H. L. Klein. 1993. Purification and characterization of the Srs2 DNA helicase of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:1252–1259.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schild, D. 1995. Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140:115–127.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1974. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shinohara, A., H. Ogawa, Y. Matsuda, N. Ushio, K. Ikeo, and T. Ogawa. 1993. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4:239–243.
  • Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a recA-like protein. Cell 69:457–470.
  • Skiba, M. C., and K. L. Knight. 1994. Functionally important residues at a subunit interface site in the RecA protein from Escherichia coli. J. Biol. Chem. 269:3823–3828.
  • Story, R. M., D. K. Bishop, N. Kleckner, and T. A. Steitz. 1993. Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science 259:1892–1896.
  • Story, R. M., and T. A. Steitz. 1992. Structure of the recA protein-ADP complex. Nature (London) 355:374–376.
  • Story, R. M., I. T. Weber, and T. A. Steitz. 1992. The structure of the E. coli recA protein monomer and polymer. Nature (London) 355:318–325.
  • Sung, P. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast Rad51 protein. Science 265:1241–1243.
  • Sung, P., and D. L. Robberson. 1995. DNA stand exchange mediated by a Rad51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–461.
  • Waksman, G., D. Kominos, S. C. Robertson, N. Pant, D. Baltimore, R. B. Birge, D. Cowburn, H. Hanafusa, B. J. Mayer, M. Overduin, M. D. Resh, C. B. Rio, L. Silverman, and J. Kuriyan. 1992. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature (London) 358:646–653.
  • Yarranton, G. T., and S. G. Sedgewick. 1982. Cloned truncated RecA genes in Escherichia coli. II. Effects of truncated gene products on in vivo recA+ protein activity. Mol. Gen. Genet. 185:99–104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.