7
Views
106
CrossRef citations to date
0
Altmetric
Research Article

Two Zinc-Finger-Containing Repressors Are Responsible for Glucose Repression of SUC2 Expression

&
Pages 4790-4797 | Received 18 Apr 1996, Accepted 03 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccha-romyces cerevisiae. Nucleic Acids Res. 21:3329.
  • Berg, J. M., and Y. Shi. 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085.
  • Brent, R. Personal communication.
  • Celenza, J. L., and M. Carlson. 1984. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:49–53.
  • Celenza, J. L., and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.
  • Dear, S., and R. Staden. 1991. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 19:3907–3911.
  • DeVit, M. Unpublished data.
  • Dohrmann, P. R., W. P. Voth, and D. J. Stillman. 1996. Role of negative regulation in promoter specificity of the homologous transcriptional activators Ace2p and Swi5p. Mol. Cell. Biol. 16:1746–1758.
  • Erhart, E., and C. P. Hollenberg. 1983. The presence of a defective LEU2 gene on 2µ DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156:625–635.
  • Fields, S., and O. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature (London) 340:245–246.
  • Flick, J. S., and M. Johnston. 1992. Analysis of URSG-mediated glucose repression of the GAL1 promoter of Saccharomyces cerevisiae. Genetics 130:295–304.
  • Goldstein, A., and J. O. Lampen. 1975. Beta-D-fructofuranoside fructohy-drolase from yeast. Methods Enzymol. 42:504–511.
  • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Guarente, L., and E. Hoar. 1984. Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the “TATA box.” Proc. Natl. Acad. Sci. USA 81:7860–7864.
  • Halloran, N., Z. Du, and R. Wilson. 1993. Sequencing reactions for the Applied Biosystems 373A automatic DNA sequencer. Methods Mol. Biol. 23:297–316.
  • Hanes, S. D., and R. Brent. 1989. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57:1275–1283.
  • Johnston, M., and M. Carlson. 1992. Regulation of carbon and phosphate utilization, p. 193–281. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and A. D. Johnson. 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719.
  • Lundin, M., J. O. Nehlin, and H. Ronne. 1994. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1. Mol. Cell. Biol. 14:1979–1985.
  • Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mercado, J. J., and J. M. Gancedo. 1992. Regulatory regions in the yeast FBP1 and PCK1 genes. FEBS Lett. 311:110–114.
  • Mercado, J. J., O. Vincent, and J. M. Gancedo. 1991. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. FEBS Lett. 291:97–100.
  • Miller, J. H. 1972. Experiments in molecular genetics, p. 352–355. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Nehlin, J. O., M. Carlberg, and H. Ronne. 1991. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 10:3373–3377.
  • Nehlin, J. O., and H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J. 9:2891–2898.
  • Niedenthal, R. K., L. Riles, M. Johnston, and J. H. Hegemann. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast, in press.
  • Östling, J., M. Carlberg, and H. Ronne. 1996. Functional domains in the Mig1 repressor. Mol. Cell. Biol. 16:753–761.
  • Özcan, S., and M. Johnston. 1995. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15:1564–1572.
  • Pavletich, N. P., and C. O. Pabo. 1991. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817.
  • Riles, L. E., and M. V. Olson. Personal communication.
  • Ronne, H. 1995. Glucose repression in fungi. Trends Genet. 11:12–17.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sarokin, L., and M. Carlson. 1984. Upstream region required for regulated expression of the glucose-repressible SUC2 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2750–2757.
  • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Schiestl, R. H., P. Manivasakam, R. A. Woods, and R. D. Gietz. 1993. Introducing DNA into yeast by transformation. Methods 5:79–85.
  • Treitel, M. A., and M. Carlson. 1995. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc. Natl. Acad. Sci. USA 92:3132–3136.
  • Trumbly, R. J. 1992. Glucose repression in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 6:15–21.
  • Vallier, L. G., and M. Carlson. 1994. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae. Genetics 137:49–54.
  • West, R., Jr., R. R. Yocum, and M. Ptashne. 1984. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASG. Mol. Cell. Biol. 4:2467–2478.
  • Yocum, R. R., S. Hanley, J. R. West, and M. Ptashne. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoters in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1985–1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.