17
Views
149
CrossRef citations to date
0
Altmetric
Research Article

Human Rad50 Is Physically Associated with Human Mre11: Identification of a Conserved Multiprotein Complex Implicated in Recombinational DNA Repair

, , , , , & show all
Pages 4832-4841 | Received 03 Apr 1996, Accepted 10 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Ajimura, M., S.-H. Leem, and H. Ogawa. 1993. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133:51–66.
  • Alani, E., R. Padmore, and N. Kleckner. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Alani, E., S. Subbiah, and N. Kleckner. 1989. The yeast RAD50 gene encodes a predicted 153 kD protein containing a purine nucleotide-binding domain and two large heptad repeat regions. Genetics 122:47–57.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1989. Current protocols in molecular biology, vol. 1-3. John Wiley & Sons, New York.
  • Bendixen, C., I. Sunjevaric, R. Bauchwitz, and R. Rothstein. 1994. Identification of a mouse homologue of the Saccharomyces cerevisiae recombination and repair gene, RAD52. Genomics 23:300–303.
  • Biedermann, K. A., J. Sun, A. J. Giaccia, L. M. Tosto, and J. M. Brown. 1991. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 88:1394–1397.
  • Blunt, T., N. J. Finnie, G. E. Taccioli, G. C. Smith, J. Demengeot, T. M. Gottlieb, R. Mizuta, A. J. Varghese, F. W. Alt, P. A. Jeggo, and S. P. Jackson. 1995. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80:813–823.
  • Bollag, R. J., A. S. Waldman, and R. M. Liskay. 1989. Homologous recombination in mammalian cells. Annu. Rev. Genet. 23:199–225.
  • Boubnov, N. V., K. T. Hall, Z. Wills, S. E. Lee, D. M. He, D. M. Benjamin, C. R. Pulaski, H. Band, W. Reeves, E. A. Hendrickson, and D. T. Weaver. 1995. Complementation of the ionizing radiation sensitivity, DNA end binding, and V(D)J recombination defects of double-strand break repair mutants by the p86 Ku autoantigen. Proc. Natl. Acad. Sci. USA 92:890–894.
  • Chaganti, R. S. K., S. Schonberg, and J. A. German. 1974. A many fold increase in sister chromatid exchange in Bloom’s syndrome lymphocytes. Proc. Natl. Acad. Sci. USA 71:4508–4512.
  • Chumakov, I., P. Rigault, S. Guillow, P. Ougen, A. Aillaut, G. Guasconi, P. Gervy, I. Legall, P. Soularue, L. Grinas, L. Bougueleret, C. Bellanne-Chan-telot, B. Lacroix, E. Barillot, P. Gesnouin, S. Pook, G. Vaysseix, G. Frelat, A. Schmitz, J.-L. Sambucy, A. Bosch, X. Estivill, J. Weissenbach, A. Vignal, H. Riethman, D. Cox, D. Patterson, K. Gardiner, M. Hattori, Y. Sakaki, H. Ichikawa, M. Ohki, Le Paslier, D., R. Heilig, S. Antonarakis, and D. Cohen. 1992. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature (London) 359:380–387.
  • Cleaver, J. E. 1989. DNA repair in man. Birth Defects 25:61–82.
  • Connelly, J., and D. R. Leach. Unpublished data.
  • Dayhoff, M. O. (ed.). 1978. A model of evolutionary change in proteins. Matrices for detecting distant relationships, supplement, 3rd ed., vol. 5. National Biomedical Research Foundation, Washington, D.C.
  • Devereux, S. 1991. Therapy associated leukaemia. Blood Rev. 5:138–145.
  • de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele. 1995. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82:321–330.
  • Dolganov, G. M. Unpublished data.
  • Dolganov, G. M., et al. Unpublished data.
  • Donovan, J. W., G. T. Milne, and D. T. Weaver. 1994. Homotypic and heterotypic protein associations control RAD51 function in double strand break repair. Genes Dev. 8:2552–2562.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fischer, S. G., E. Cayanis, M. D. F. Bonaldo, A. M. Bowcock, L. L. Deaven, I. S. Edelman, T. Gallardo, S. Kalachikov, L. Lawton, J. L. Longmire, M. Lovett, S. Osborne-Lawrence, R. Rothstein, J. J. Russo, M. B. Soares, I. Sunjevaric, V. S. Venkatraj, D. Warburton, P. Zhang, and A. Efstratiadis. 1996. A high-resolution annotated physical map of the human chromosome 13q12-13 region containing the breast cancer susceptibility locus BRCA2. Proc. Natl. Acad. Sci. USA 93:690–694.
  • Game, J. C. 1993. DNA double strand breaks and the RAD50-RAD57 genes in Saccharomyces. Cancer Biol. 4:73–83.
  • German, J. 1983. Patterns of neoplasia associated with the chromosome-breakage syndromes, p. 11–21. In J. German (ed.), Chromosome mutation & neoplasia. Alan R. Liss, New York.
  • Giaccia, A., R. Weinstein, J. Hu, and T. D. Stamato. 1985. Cell cycle-dependent repair of double-strand DNA breaks in a gamma-ray-sensitive Chinese hamster cell. Somatic Cell Mol. Genet. 11:485–491.
  • Gibson, F. P., D. R. F. Leach, and R. G. Lloyd. 1992. Identification of sbcD mutations as cosuppressors of recBC that allow propogation of DNA palindromes in Escherichia coli K-12. J. Bacteriol. 174:1222–1228.
  • Gorbalenya, A. E., and E. V. Koonin. 1990. Superfamily of UvrA-related NTP-binding proteins. Implications for rational classification of recombination/repair systems. J. Mol. Biol. 213:583–591.
  • Groupe Français de Cytogénétique Hématologique. 1993. Collaborative study of karyotypes in childhood acute lymphoblastic leukemias. Leukemia 7:10–1926.
  • Haber, J. E. 1992. Exploring the pathways of homologous recombination. Curr. Opin. Cell Biol. 4:401–412.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hays, S. L., A. A. Firmenich, and P. Berg. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92:6925–6929.
  • Hendrickson, E. A., X.-Q. Qin, E. A. Bump, D. G. Schatz, M. Oettinger, and D. T. Weaver. 1991. A link between double-strand break-related repair and V(D)J recombination: the scid mutation. Proc. Natl. Acad. Sci. USA 88:4061–4065.
  • Hirano, T., T. J. Mitchison, and J. R. Swedlow. 1995. The SMC family: from chromosome condensation to dosage compensation. Curr. Opin. Cell Biol. 7:329–336.
  • Ivanov, E. L., V. G. Korolev, and F. Fabre. 1992. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132:651–664.
  • Ivanov, E. L., N. Sugawara, J. Fishman-Lobell, and J. E. Haber. 1996. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142:693–704.
  • Ivanov, E. L., N. Sugawara, C. I. White, F. Fabre, and J. E. Haber. 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Jeggo, P. A., and L. M. Kemp. 1983. X-ray sensitive mutants of Chinese hamster ovary cell line: isolation and cross-sensitivity to other DNA damaging agents. Mutat. Res. 112:313–327.
  • Jeggo, P. A., J. Tesmer, and D. J. Chen. 1991. Genetic analysis of ionising radiation sensitive mutants of cultured mammalian cell lines. Mutat. Res. 254:125–133.
  • Johzhuka, K., and H. Ogawa. 1995. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139:1521–1532.
  • Jones, N. J., R. Cox, and J. Thacker. 1988. Six complementation groups for ionising radiation sensitivity in Chinese hamster cells. Mutat. Res. 193:139–144.
  • Kadyk, L. C., and L. H. Hartwell. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402.
  • Kohara, Y. Unpublished data.
  • Koonin, E. V. 1994. Conserved sequence pattern in a wide variety of phos-phoesterases. Protein Sci. 3:356–358.
  • Kowalczykowski, S. C., D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58:401–465.
  • Kramer, K. M., J. A. Brock, K. Bloom, J. K. Moore, and J. E. Haber. 1994. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14:1293–1301.
  • Langlois, R. G., W. L. Bigbee, R. H. Jensen, and J. German. 1989. Evidence for increased in vivo mutation and somatic recombination in Bloom’s syndrome. Proc. Natl. Acad. Sci. USA 86:670–674.
  • Leach, D. R. F., R. G. Lloyd, and A. F. W. Coulson. 1992. The SbcCD protein of Escherichia coli is related to two putative nucleases in the UvrA super-family of nucleotide-binding proteins. Genetica 87:95–100.
  • Le Beau, M. 1992. Deletions of chromosome 5 in malignant myeloid disorders. Cancer Surv. 15:143–159.
  • Le Beau, M., R. Espinosa, W. L. Neuman, W. Stock, D. Roulston, R. A. Larson, M. Keinanen, and C. A. Westbrook. 1993. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc. Natl. Acad. Sci. USA 90:5484–5488.
  • Le Beau, M. M., K. S. Albain, R. A. Larson, J. W. Vardiman, E. M. Davis, R. R. Blough, H. M. Golomb, and J. D. Rowley. 1986. Clinical and cytoge-netic correlations in 63 patients with therapy-related myelodysplastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7. J. Clin. Oncol. 4:325–345.
  • Lee, S. E., C. R. Pulaski, D. M. He, D. M. Benjamin, M. Voss, J. Um, and E. A. Hendrickson. 1995. Isolation of mammalian cell mutants that are X-ray sensitive, impaired in DNA double-strand break repair and defective for V(D)J recombination. Mutat. Res. 336:279–291.
  • Liber, H. L., and W. G. Thilly. 1982. Mutation assay at the thymidine kinase locus in diploid human lymphoblasts. Mutat. Res. 94:467–485.
  • Lipman, D. J., and W. R. Pearson. 1985. Rapid and sensitive protein similarity searches. Science 227:1435–1441.
  • Longmire, J. L., N. C. Brown, L. J. Meincke, M. L. Campbell, K. L. Albright, J. J. Fawcett, E. W. Campbell, R. K. Moyzis, C. E. Hildebrand, G. A. Evans, and L. L. Deavon. 1993. Construction and characterization of partial digest DNA libraries made from flow-sorted human chromosome 16. Genet. Anal. Tech. Appl. 10:69–76.
  • Lovett, M., J. Kere, and L. M. Hinton. 1991. Direct selection: a method for the isolation of cDNAs encoded by large genomic regions. Proc. Natl. Acad. Sci. USA 88:9628–9632.
  • Lupas, A., M. Van Dyke, and J. Stock. 1991. Predicting coiled coils from protein sequences. Science 252:1162–1164.
  • Malone, R. E., T. Ward, S. Lin, and J. Waring. 1990. The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr. Genet. 18:111–116.
  • Maser, R. S., K. J. Monsen, and J. H. J. Petrini. Unpublished data.
  • McLachlan, A., and J. Karn. 1982. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. Nature (London) 299:226–231.
  • Meyn, M. S. 1993. High spontaneous rates of intrachromosomal recombination in ataxia-telangiectasia. Science 260:1327–1330.
  • Mezard, C., and A. Nicolas. 1994. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol. Cell. Biol. 14:1278–1292.
  • Milne, G. T., and D. T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7:1755–1765.
  • Moore, J. K., and J. E. Haber. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164–2173.
  • Morgan, J. G., G. M. Dolganov, S. E. Robbins, L. M. Hinton, and M. Lovett. 1992. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Res. 20:5173–5179.
  • Nagarajan, L., J. Zavadil, D. Claxton, X. Lu, J. Fairman, J. A. Warrington, J. J. Wasmuth, A. C. Chinault, C. E. Sever, M. L. Slovak, C. L. Willman, and A. B. Deisseroth. 1994. Consistent loss of the D5S89 locus mapping telomeric to the interleukin gene cluster and centromeric to EGR-1 in patients with 5q-chromosome. Blood 83:199–208.
  • Neuman, W. L., C. M. Rubin, R. B. Rios, R. A. Larson, B. M. Le, J. D. Rowley, J. W. Vardiman, J. L. Schwartz, and R. A. Farber. 1992. Chromosomal loss and deletion are the most common mechanisms for loss of het-erozygosity from chromosomes 5 and 7 in malignant myeloid disorders. Blood 79:1501–1510.
  • Passarge, E. 1983. Bloom’s syndrome, p. 11–21. In J. German (ed.), Chromosome mutation & neoplasia. Alan R. Liss, New York.
  • Pedersen, B. 1993. 5q-: pathogenetic importance of the common deleted region and clinical consequences of the entire deleted segment. Anticancer Res. 13:1913–1916.
  • Petes, T. D., R. E. Malone, and L. E. Symington. 1991. Recombination in yeast, p. 407–521. In J. R. Broach, J. Pringle, and E. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol. I. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Petrini, J. H. J., M. E. Walsh, C. Di Mare, J. R. Korenberg, X.-N. Chen, and D. T. Weaver. 1995. Isolation and characterization of the human MRE11 homologue. Genomics 29:80–86.
  • Raymond, W. E., and N. Kleckner. 1993. RAD50 protein of S. cerevisiae exhibits ATP-dependent DNA binding. Nucleic Acids Res. 21:3851–3856.
  • Robbins, J., S. M. Dilworth, R. A. Laskey, and C. Dingwall. 1991. Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623.
  • Roth, D. B., and J. H. Wilson. 1988. Illegitimate recombination in mammalian cells, p. 621–654. In R. Kucherlapati and G. R. Smith (ed.), Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Saitoh, N., I. Goldberg, and W. C. Earnshaw. 1995. The SMC proteins and the coming of age of the chromosome scaffold hypothesis. Bioessays 17:759–766.
  • Saltman, D. L., G. M. Dolganov, J. A. Warrington, J. J. Wasmuth, and M. Lovett. 1993. A physical map of 15 loci on human chromosome 5q23-33 by two-color fluorescence in situ hybridization. Genomics 16:726–732.
  • Schiestl, R. H., J. Zhu, and T. D. Petes. 1994. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:4495–4500.
  • Sharples, G. J., and D. R. Leach. 1995. Structural and functional similarities between the SbcCD proteins of Escherichia coli and the RAD50 and MRE11 (RAD32) recombination and repair proteins of yeast. Mol. Micro-biol. 17:1215–1217.
  • Shen, Z., K. G. Cloud, D. J. Chen, and M. S. Park. 1996. Specific interactions between the human RAD51 and RAD52 proteins. J. Biol. Chem. 271:148–152.
  • Shen, Z., K. Denison, R. Lobb, J. M. Gatewood, and D. J. Chen. 1995. The human and mouse homologs of the yeast RAD52 gene: cDNA cloning, sequence analysis, assignment to human chromosome 12p12.2-p13, and mRNA expression in mouse testis. Genomics 25:199–206.
  • Shinohara, A., H. Ogawa, Y. Matsuda, N. Ushio, K. Ikeo, and T. Ogawa. 1993. Cloning of the human, mouse, and fission yeast recombination genes homologous to RAD51 and recA. Nat. Genet. 4:239–243.
  • Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470.
  • Stamato, T. D., R. Weinstein, A. Giaccia, and L. Mackenzie. 1983. Isolation of cell cycle-dependent gamma ray-sensitive Chinese hamster ovary cell. Somatic Cell Genet. 9:165–173.
  • Taccioli, G. E., T. M. Gottlieb, T. Blunt, A. Priestley, J. Demengeot, R. Mizuta, A. R. Lehmann, F. W. Alt, S. P. Jackson, and P. A. Jeggo. 1994. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265:1442–1445.
  • Taccioli, G. E., G. Rathbun, E. Oltz, T. Stamato, P. A. Jeggo, and F. W. Alt. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260:207–210.
  • Tavassoli, M., M. Shayeghi, A. Naism, and F. Z. Watts. 1995. Cloning and characterization of the Schizosaccharomyces pombe rad32 gene: a gene required for repair of double strand breaks and recombination. Nucleic Acids Res. 23:383–388.
  • Thomas, K. R., and M. R. Capecchi. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512.
  • Thompson, L. H., K. W. Brookman, N. J. Jones, S. A. Allen, and A. V. Carrano. 1990. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol. Cell. Biol. 10:6160–6171.
  • Valancius, V., and O. Smithies. 1991. Double-strand gap repair in a mammalian gene targeting reaction. Mol. Cell. Biol. 11:4389–4397.
  • Verhaegh, G. W., W. Jongmans, B. Morolli, N. G. Jaspers, G. P. van der Schans, P. H. Lohman, and M. Z. Zdzienicka. 1995. A novel type of X-ray-sensitive Chinese hamster cell mutant with radioresistant DNA synthesis and hampered DNA double-strand break repair. Mutat. Res. 337:119–129.
  • Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945–951.
  • Weaver, D. T. 1995. What to do at an end: DNA double-strand break repair. Trends Genet. Sci. 11:388–392.
  • Whitmore, G. F., A. J. Varghese, and S. Gulyas. 1989. Cell cycle responses of two X-ray sensitive mutants defective in DNA repair. Int. J. Radiat. Biol. 56:657–665.
  • Zakharov, I. A., N. G. Suslova, and I. V. Fedorova. 1983. Intragenic mitotic recombination induced by ultraviolet and gamma rays in radiosensitive yeast mutants. Genetika 19:49–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.