15
Views
126
CrossRef citations to date
0
Altmetric
Research Article

HHR23B, a Human Rad23 Homolog, Stimulates XPC Protein in Nucleotide Excision Repair In Vitro

, , , , , , & show all
Pages 4852-4861 | Received 22 May 1996, Accepted 20 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Aboussekhra, A., M. Biggerstaff, M. K. K. Shivji, J. A. Vilpo, V. Moncollin, V. N. Podust, M. Protic, U. Hübscher, J.-M. Egly, and R. D. Wood. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868.
  • Aboussekhra, A., and R. D. Wood. 1994. Repair of UV-damaged DNA by mammalian cells and Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 4:212–220.
  • Biggerstaff, M., D. E. Szymkowski, and R. D. Wood. 1993. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 12:3685–3692.
  • Bohr, V. A., C. A. Smith, D. S. Okumoto, and P. C. Hanawalt. 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359–369.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Collins, A. R. 1993. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat. Res. 293:99–118.
  • Flejter, W. L., L. D. McDaniel, D. Johns, E. C. Friedberg, and R. A. Schultz. 1992. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc. Natl. Acad. Sci. USA 89:261–265.
  • Friedberg, E. C., G. C. Walker, and W. Siede. 1995. DNA repair and mu-tagenesis. ASM Press, Washington, D.C.
  • Grossman, L., and S. Thiagalingam. 1993. Nucleotide excision repair, a tracking mechanism in search of damage. J. Biol. Chem. 268:16871–16874.
  • Guzder, S. N., V. Bailly, P. Sung, L. Prakash, and S. Prakash. 1995. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J. Biol. Chem. 270:8385–8388.
  • Guzder, S. N., Y. Habraken, P. Sung, L. Prakash, and S. Prakash. 1995. Reconstitution of yeast nucleotide excision repair with purified Rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270:12973–12976.
  • Hanawalt, P., and I. Mellon. 1993. Stranded in an active gene. Curr. Biol. 3:67–69.
  • Hoeijmakers, J. H. J. 1993. Nucleotide excision repair. I. From E. coli to yeast. Trends Genet. 9:173–177.
  • Hoeijmakers, J. H. J. 1994. Human nucleotide excision repair syndromes: molecular clues to unexpected intricacies. Eur. J. Cancer 30A:1912–1921.
  • Kenny, M. K., U. Schlegel, H. Furneaux, and J. Hurwitz. 1990. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem. 265:7693–7700.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lee, S.-H., Y. Ishimi, M. K. Kenny, P. Bullock, F. B. Dean, and J. Hurwitz. 1988. An inhibitor of the in vitro elongation of simian virus 40 DNA replication is overcome by proliferating-cell nuclear antigen. Proc. Natl. Acad. Sci. USA 85:9469–9473.
  • Legerski, R., and C. Peterson. 1992. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature (London) 359:70–73.
  • Li, L., E. S. Bales, C. A. Peterson, and R. J. Legerski. 1993. Characterization of molecular defects in xeroderma pigmentosum group C. Nat. Genet. 5:413–417.
  • Lin, J. J., and A. Sancar. 1992. (A)BC excinuclease: the Escherichia coli nucleotide excision repair enzyme. Mol. Microbiol. 6:2219–2224.
  • Masutani, C., K. Sugasawa, H. Asahina, K. Tanaka, and F. Hanaoka. 1993. Cell-free repair of UV-irradiated simian virus 40 chromosomes in human cell extracts. II. Defective DNA repair synthesis by xeroderma pigmentosum cell extracts. J. Biol. Chem. 268:9105–9109.
  • Masutani, C., K. Sugasawa, J. Yanagisawa, T. Sonoyama, M. Ui, T. Eno-moto, K. Takio, K. Tanaka, P. van der Spek, D. Bootsma, J. H. J. Hoeij-makers, and F. Hanaoka. 1994. Purification and cloning of a nucleotide excision repair complex involving the xeroderma pigmentosum group C protein and a human homologue of yeast RAD23. EMBO J. 13:1831–1843.
  • Mayne, L. V., and A. R. Lehmann. 1982. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne’s syndrome and xeroderma pigmentosum. Cancer Res. 42:1473–1478.
  • Mellon, I., G. Spivak, and P. Hanawalt. 1987. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241–249.
  • Mu, D., D. S. Hsu, and A. Sancar. 1996. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271:8285–8294.
  • O’Donovan, A., A. A. Davies, J. G. Moggs, S. C. West, and R. D. Wood. 1994. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature (London) 371:432–435.
  • O’Donovan, A., and R. D. Wood. 1993. Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5. Nature (London) 363:185–188.
  • Prakash, S., P. Sung, and L. Prakash. 1990. Structure and function of RAD3, RAD6 and other DNA repair genes of Saccharomyces cerevisiae, p. 275–292. In P. R. Strauss and S. H. Wilson (ed.), The eukaryotic nucleus. Telford Press, Inc., Caldwell, NJ.
  • Schaeffer, L., V. Moncollin, R. Roy, A. Staub, M. Mezzina, A. Sarasin, G. Weeda, J. H. J. Hoeijmakers, and J. M. Egly. 1994. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13:2388–2392.
  • Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. J. Hoeijmakers, P. Chambon, and J.-M. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Shivji, M. K. K., M. K. Kenny, and R. D. Wood. 1992. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69:367–374.
  • Sibghat-Ullah, I. Husain, W. Carlton, and A. Sancar. 1989. Human nucleotide excision repair in vitro: repair of pyrimidine dimers, psoralen and cisplatin adducts by HeLa cell-free extract. Nucleic Acids Res. 174:4471–4484.
  • Sugasawa, K., C. Masutani, and F. Hanaoka. 1993. Cell-free repair of UV-damaged simian virus 40 chromosomes in human cell extracts. I. Development of a cell-free system detecting excision repair of UV-irradiated SV40 chromosomes. J. Biol. Chem. 268:9098–9104.
  • Summers, M. D., and G. E. Smith. 1987. Texas Agricultural Experiment Station Bulletin, vol. 1555. A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experiment Station, College Station.
  • Tanaka, K., N. Miura, I. Satokata, I. Miyamoto, M. C. Yoshida, S. Satoh, A. Kondo, A. Yasui, H. Okayama, and Y. Okada. 1990. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature (London) 348:73–76.
  • Tanaka, K., and R. D. Wood. 1994. Xeroderma pigmentosum and nucleotide excision repair of DNA. Trends Biochem. Sci. 19:83–86.
  • Troelstra, C., A. van Gool, J. de Wit, W. Vermeulen, D. Bootsma, and J. H. J. Hoeijmakers. 1992. ERCC6, a member of a subfamily of putative helicases, is involved in Cockayne’s syndrome and preferential repair of active genes. Cell 71:939–953.
  • Van Houten, B. 1990. Nucleotide excision repair in Escherichia coli. Micro-biol. Rev. 54:18–51.
  • van Vuuren, A. J., E. Appeldoom, H. Odijk, A. Yasui, N. G. J. Jaspers, D. Bootsma, and J. H. J. Hoeijmakers. 1993. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J. 12:3693–3701.
  • Venema, J., L. H. F. Mullenders, A. T. Natarajan, A. A. van Zeeland, and L. V. Mayne. 1990. The genetic defect in Cockayne’s syndrome is associated with a defect in repair of UV-induced DNA damage in transcriptionally active DNA. Proc. Natl. Acad. Sci. USA 87:4707–4711.
  • Venema, J., A. van Hoffen, A. T. Natarajan, A. A. van Zeeland, and L. H. F. Mullenders. 1990. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 18:443–448.
  • Verhage, R., A.-M. Zeeman, N. de Groot, F. Gleig, D. D. Bang, P. van de Putte, and J. Brouwer. 1994. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6135–6142.
  • Verhage, R. A., A.-M. Zeeman, M. Lombaerts, P. van de Putte, and J. Brouwer. 1996. Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant. Mutat. Res. 362:155–165.
  • Wang, Z., X. Wu, and E. C. Friedberg. 1993. Nucleotide-excision repair of DNA in cell-free extracts of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:4907–4911.
  • Watkins, J. F., P. Sung, L. Prakash, and S. Prakash. 1993. The Saccharo-myces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13:7757–7765.
  • Weeda, G., R. C. A. van Ham, W. Vermeulen, D. Bootsma, A. J. van der Eb, and J. H. J. Hoeijmakers. 1990. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne’s syndrome. Cell 62:777–791.
  • Wood, R. D., P. Robins, and T. Lindahl. 1988. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell 53:97–106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.