3
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Phosphorylation of Gal4p at a Single C-Terminal Residue Is Necessary for Galactose-Inducible Transcription

, &
Pages 4879-4887 | Received 03 Apr 1996, Accepted 28 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Balciunas, D., and H. Ronne. Personal communication.
  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and M. Ptashne. 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Berk, A. J. 1995. Biochemistry meets genetics in the holoenzyme. Proc. Natl. Acad. Sci. USA 92:11952–11954.
  • Bhat, P. J., and J. E. Hopper. 1991. The mechanism of inducer formation in gal3 mutants of the yeast galactose system is independent of normal galactose metabolism and mitochondrial respiratory function. Genetics 128:233–239.
  • Bhat, P. J., and J. E. Hopper. 1992. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol. Cell. Biol. 12:2701–2707.
  • Cismowski, M. J., G. M. Laff, M. J. Solomon, and S. I. Reed. 1995. KIN28 encodes a C-terminal domain kinase that controls mRNA transcription in Saccharomyces cerevisiae but lacks cyclin-dependent kinase-activating kinase (CAK) activity. Mol. Cell. Biol. 15:2983–2992.
  • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Gietz, R. D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–535.
  • Griggs, D. W., and M. Johnston. 1993. Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:4999–5009.
  • Himmelfarb, H. J., J. Pearlberg, D. H. Last, and M. Ptashne. 1990. GAL11P: a yeast mutation that potentiates the effect of weak GAL4-derived activators. Cell 63:1299–1309.
  • Johnston, M. 1987. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51:458–476.
  • Johnston, M., and J. Dover. 1988. Mutational analysis of the GAL4-encoded transcriptional activator protein of Saccharomyces cerevisiae. Genetics 120:63–74.
  • Johnston, M., J. S. Flick, and T. Pexton. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccha-romyces cerevisiae. Mol. Cell. Biol. 14:3834–3841.
  • Klempnauer, K.-H., G. Symonds, G. I. Evan, and J. M. Bishop. 1984. Sub-cellular localization of proteins encoded by oncogenes of avian myeloblas-tosis virus and avian leukemia virus E26 and by the chicken c-myb gene. Cell 37:537–547.
  • Kuchin, S., P. Yeghiayan, and M. Carlson. 1995. Cyclin-dependent protein kinase and cyclin homologs SSN3 and SSN8 contribute to transcriptional control in yeast. Proc. Natl. Acad. Sci. USA 92:4006–4010.
  • Lee, J. M., and A. L. Greenleaf. 1991. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr. 1:149–167.
  • Leuther, K., and S. A. Johnston. 1992. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 256:1333–1335.
  • Lohr, D. 1988. Isolation of yeast nuclei and chromatin for studies of transcription-related processes, p. 125–145. In I. Campbell and J. H. Duffus (ed.), Yeast, a practical approach. IRL Press, Washington, D.C.
  • Lohr, D., P. Venkov, and J. Zlatanova. 1995. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J. 9:777–787.
  • Long, R. M., L. M. Mylin, and J. E. Hopper. 1991. GAL11 (SPT13), a transcriptional regulator of diverse yeast genes, affects the phosphorylation state of GAL4, a highly specific transcriptional activator. Mol. Cell. Biol. 11:2311–2314.
  • Lu, H., L. Zawel, L. Fisher, J. Egly, and D. Reinberg. 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature (London) 358:641–645.
  • Ma, J., and M. Ptashne. 1987. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Mylin, L. M., J. P. Bhat, and J. E. Hopper. 1989. Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev. 3:1157–1165.
  • Mylin, L. M., M. Johnston, and J. E. Hopper. 1990. Phosphorylated forms of GAL4 are correlated with ability to activate transcription. Mol. Cell. Biol. 10:4623–4629.
  • Nishizawa, M., Y. Suzuki, Y. Nogi, K. Matsumoto, and T. Fukasawa. 1990. Yeast Gal11 protein mediates the transcriptional activation signal of two different transacting factors, Gal4 and general regulatory factor I. Proc. Natl. Acad. Sci. USA 87:5373–5377.
  • Nogi, Y. 1986. GAL3 gene product is required for maintenance of the induced state of the GAL cluster genes in Saccharomyces cerevisiae. J. Bac-teriol. 165:101–106.
  • Parthun, M. R., and J. A. Jaehning. 1992. A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80. Mol. Cell. Biol. 12:4981–4987.
  • Ramsay, G., L. Stanton, M. Schwab, and J. M. Bishop. 1986. Human proto-oncogene N-myc encodes nuclear proteins that bind DNA. Mol. Cell. Biol. 6:4450–4457.
  • Rohde, J., and I. Sadowski. 1996. Unpublished data.
  • Sadowski, I., B. Bell, P. Broad, and M. Hollis. 1992. GAL4 fusion vectors for expression in yeast or mammalian cells. Gene 118:137–141.
  • Sadowski, I., D. Niedbala, K. Wood, and M. Ptashne. 1991. GAL4 is phos-phorylated as a consequence of transcriptional activation. Proc. Natl. Acad. Sci. USA 88:10510–10514.
  • Sadowski, I., J. C. Stone, and T. Pawson. 1986. A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps. Mol. Cell. Biol. 6:4396–4408.
  • Serizawa, H., T. P. Makela, J. W. Conaway, R. C. Conaway, R. A. Weinberg, and R. A. Young. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature (London) 374:280–282.
  • Sterner, D. E., J. M. Lee, S. E. Hardin, and A. L. Greenleaf. 1995. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin–cyclin-dependent kinase complex. Mol. Cell. Biol. 15:5716–5724.
  • Stone, G., and I. Sadowski. 1993. GAL4 is regulated by a glucose-responsive functional domain. EMBO J. 12:1375–1385.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Suzuki-Fujimoto, T., M. Fukuma, K.-I. Yano, H. Sakurai, A. Vonika, S. A. Johnston, and T. Fukasawa. 1996. Analysis of the galactose signal transduc-tion pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol. Cell. Biol. 16:2504–2508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.