1
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Composite Patterns in Neutral/Neutral Two-Dimensional Gels Demonstrate Inefficient Replication Origin Usage

&
Pages 4915-4922 | Received 01 May 1996, Accepted 24 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Anachkova, B., and J. L. Hamlin. 1989. Replication in the amplified dihy-drofolate reductase domain in CHO cells may initiate at two distinct sites, one of which is a repetitive sequence element. Mol. Cell. Biol. 9:532–540.
  • Bell, L., and B. Byers. 1983. Separation of branched from linear DNA by two-dimensional gel electrophoresis. Anal. Biochem. 130:527–535.
  • Black, P. H., E. M. Crawford, and L. V. Crawford. 1964. The purification of simian virus 40. J. Virol. 24:381–387.
  • Brewer, B. J., and W. L. Fangman. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Brun, C., P. A. Dijkwel, R. D. Little, J. L. Hamlin, C. L. Schildkraut, and J. A. Huberman. 1995. Yeast and mammalian replication intermediates migrate similarly in two-dimensional gels. Chromosoma 104:92–102.
  • Burhans, W. C., J. E. Selegue, and N. H. Heintz. 1986. Replication intermediates formed during initiation of DNA synthesis in methotrexate-resistant CHOC 400 cells are enriched for sequences derived from a specific, amplified restriction fragment. Biochemistry 25:441–449.
  • Burhans, W. C., J. E. Selegue, and N. H. Heintz. 1986. Isolation of the origin of replication associated with the amplified Chinese hamster dihydrofolate reductase domain. Proc. Natl. Acad. Sci. USA 83:7790–7794.
  • Burhans, W. C., L. T. Vassilev, M. S. Caddle, N. H. Heintz, and M. L. DePamphilis. 1990. Identification of an origin of bidirectional DNA replication in mammalian chromosomes. Cell 62:955–965.
  • Delidakis, C., and F. C. Kafatos. 1989. Amplification enhancers and replication origins in the autosomal chorion gene cluster of Drosophila. EMBO J. 8:891–901.
  • Dershowitz, A., and C. S. Newlon. 1993. The effect on chromosome stability of deleting replication origins. Mol. Cell. Biol. 13:391–398.
  • Dijkwel, P. A., and J. L. Hamlin. 1988. Matrix attachment regions are positioned near replication initiation sites, genes, and an interamplicon junction in the amplified dihydrofolate reductase domain of Chinese hamster ovary cells. Mol. Cell. Biol. 8:5398–5409.
  • Dijkwel, P. A., and J. L. Hamlin. 1992. Initiation of DNA replication in the dihydrofolate reductase locus is confined to the early S period in CHO cells synchronized with the plant amino acid mimosine. Mol. Cell. Biol. 12:3715–3722.
  • Dijkwel, P. A., and J. L. Hamlin. 1995. The Chinese hamster dihydrofolate reductase origin consists of multiple potential nascent-strand start sites. Mol. Cell. Biol. 15:3023–3031.
  • Dijkwel, P. A., J. P. Vaughn, and J. L. Hamlin. 1991. Mapping of replication initiation sites in mammalian genomes by two-dimensional gel analysis: stabilization and enrichment of replication intermediates by isolation on the nuclear matrix. Mol. Cell. Biol. 11:3850–3859.
  • Dijkwel, P. A., J. P. Vaughn, and J. L. Hamlin. 1994. Replication initiation sites are distributed widely in the amplified CHO dihydrofolate reductase domain. Nucleic Acids Res. 22:4989–4996.
  • Ferguson, B. M., B. J. Brewer, A. E. Reynolds, and W. L. Fangman. 1991. A yeast origin of replication is activated late in S phase. Cell 65:507–515.
  • Gaudette, M. F., and R. M. Benbow. 1986. Replication forks are underrep-resented in chromosomal DNA of Xenopus laevis embryos. Proc. Natl. Acad. Sci. USA 83:5953–5957.
  • Greenfeder, S. A., and C. S. Newlon. 1992. A replication map of a 61-kb circular derivative of Saccharomyces cerevisiae chromosome III. Mol. Biol. Cell 3:999–1013.
  • Handeli, S., A. Klar, M. Meuth, and H. Cedar. 1989. Mapping replication units in animal cells. Cell 57:909–920.
  • Heck, M. M., and A. C. Spradling. 1990. Multiple replication origins are used during Drosophila chorion gene amplification. J. Cell Biol. 110:903–914.
  • Heintz, N. H., and J. L. Hamlin. 1982. An amplified chromosomal sequence that includes the gene for dihydrofolate reductase initiates replication within specific restriction fragments. Proc. Natl. Acad. Sci. USA 79:4083–4087.
  • Heinzel, S. S., P. J. Krysan, C. T. Tran, and M. P. Calos. 1991. Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Mol. Cell. Biol. 11:2263–2272.
  • Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26:365–369.
  • Huberman, J. A., and A. D. Riggs. 1968. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32:327–341.
  • Hyrien, O., and M. Mechali. 1993. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 12:4511–4520.
  • Jacob, F., and S. Brenner. 1963. Sur la régulation de la synthèse du DNA chez les bactéries: l’hypothèse du replicon. C. R. Acad. Sci. 246:298–300.
  • Kalejta, R. F. Unpublished data.
  • Kalejta, R. F., and J. L. Hamlin. Submitted for publication.
  • Kalejta, R. F., H.-B. Lin, P. A. Dijkwel, and J. L. Hamlin. 1996. Characterizing replication intermediates in the amplified CHO dihydrofolate reduc-tase domain by two novel gel electrophoretic techniques. Mol. Cell. Biol. 16:4923–4931.
  • Krysan, P. J., and M. P. Calos. 1991. Replication initiates at multiple locations on an autonomously replicating plasmid in human cells. Mol. Cell. Biol. 11:1464–1472.
  • Leu, T. H., and J. L. Hamlin. 1989. High-resolution mapping of replication fork movement through the amplified dihydrofolate reductase domain in CHO cells by in-gel renaturation analysis. Mol. Cell. Biol. 9:523–531.
  • Liang, C., and S. A. Gerbi. 1994. Analysis of an origin of DNA amplification in Sciara coprophila by a novel three-dimensional gel method. Mol. Cell. Biol. 14:1520–1529.
  • Liang, C., J. D. Spitzer, H. S. Smith, and S. A. Gerbi. 1993. Replication initiates at a confined region during DNA amplification in Sciara DNA puff II/9A. Genes Dev. 7:1072–1084.
  • Liang, C., M. Weinreich, and B. Stillman. 1995. ORC and Cdc6p interact and determine the frequency of initiation of DNA replication in the genome. Cell 81:667–676.
  • Linskens, M. H., and J. A. Huberman. 1990. Ambiguities in results obtained with 2D gel replicon mapping techniques. Nucleic Acids Res. 18:647–652.
  • Linskens, M. H. K., and J. A. Huberman. 1988. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4927–4935.
  • Little, R. D., T. H. Platt, and C. L. Schildkraut. 1993. Initiation and termination of DNA replication in human rRNA genes. Mol. Cell. Biol. 13:6600–6613.
  • Ma, C., T.-H. Leu, and J. L. Hamlin. 1990. Multiple origins of replication in the dihydrofolate reductase amplicons of a methotrexate-resistant Chinese hamster cell line. Mol. Cell. Biol. 10:1338–1346.
  • Martin, M. A., and D. Axelrod. 1969. SV40 gene activity during lytic infection and in a series of SV40 transformed mouse cells. Proc. Natl. Acad. Sci. USA 64:1203–1210.
  • Martin, P. L., P. Hernandez, R. M. Martinez, and J. B. Schvartzman. 1991. Unidirectional replication as visualized by two-dimensional agarose gel elec-trophoresis. J. Mol. Biol. 220:843–853.
  • Martin, P. L., P. Hernandez, R. M. Martinez, and J. B. Schvartzman. 1992. Initiation of DNA replication in ColE1 plasmids containing multiple potential origins of replication. J. Biol. Chem. 267:22496–22505.
  • McWhinney, C., and M. Leffak. 1990. Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene. Nucleic Acids Res. 18:1233–1242.
  • Milbrandt, J. D., N. H. Heintz, W. C. White, S. M. Rothman, and J. L. Hamlin. 1981. Methotrexate-resistant Chinese hamster ovary cells have amplified a 135-kilobase-pair region that includes the dihydrofolate reductase gene. Proc. Natl. Acad. Sci. USA 78:6043–6047.
  • Nawotka, K. A., and J. A. Huberman. 1988. Two-dimensional gel electro-phoretic method for mapping DNA replicons. Mol. Cell. Biol. 8:1408–1413.
  • Rivier, D. H., and J. Rine. 1992. An origin of DNA replication and a transcription silencer require a common element. Science 256:659–663.
  • Serwer, P. 1985. Two-dimensional agarose gel electrophoresis without gel manipulation. Anal. Biochem. 144:172–178.
  • Serwer, P., R. H. Watson, and S. J. Hayes. 1987. Multidimensional analysis of intracellular bacteriophage T7 DNA: effects of amber mutations in genes 3 and 19. J. Virol. 61:3499–3509.
  • Shinomiya, T., and S. Ina. 1991. Analysis of chromosomal replicons in early embryos of Drosophila melanogaster by two-dimensional gel electrophore-sis. Nucleic Acids Res. 19:3935–3941.
  • Shinomiya, T., and S. Ina. 1993. DNA replication of histone gene repeats in Drosophila melanogaster tissue culture cells: multiple initiation sites and replication pause sites. Mol. Cell. Biol. 13:4098–4106.
  • Snapka, R. M., C. G. Shin, P. A. Permana, and J. Strayer. 1991. Aphidicolin-induced topological and recombinational events in simian virus 40. Nucleic Acids Res. 19:5065–5072.
  • Sudo, K., M. Ogata, Y. Sato, A. S. Iguchi, and H. Ariga. 1990. Cloned origin of DNA replication in c-myc gene can function and be transmitted in trans-genic mice in an episomal state. Nucleic Acids Res. 18:5425–5432.
  • Vassilev, L. T., W. C. Burhans, and M. L. DePamphilis. 1990. Mapping an origin of DNA replication at a single-copy locus in exponentially proliferating mammalian cells. Mol. Cell. Biol. 10:4685–4689.
  • Vaughn, J. P., P. A. Dijkwel, and J. L. Hamlin. 1990. Replication initiates in a broad zone in the amplified CHO dihydrofolate reductase domain. Cell 61:1075–1087.
  • Wasserman, S. A., J. M. Dungan, and N. R. Cozzarelli. 1985. Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229:171–174.
  • Wohlgemuth, J. G., G. H. Bulboaca, M. Moghadam, M. S. Caddle, and M. P. Calos. 1994. Physical mapping of origins of replication in the fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell 5:839–849.
  • Wu, C., P. Friedlander, C. Lamoureux, H. M. Zannis-Hadjopoulos, and G. B. Price. 1993. cDNA clones contain autonomous replication activity. Biochim. Biophys. Acta 1174:241–257.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.