4
Views
40
CrossRef citations to date
0
Altmetric
Research Article

RNA Structure Is a Critical Determinant of Poly(A) Site Recognition by Cleavage and Polyadenylation Specificity Factor

, &
Pages 4942-4951 | Received 29 Apr 1996, Accepted 06 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Adami, G., and J. R. Nevins. 1988. Splice site selection dominates over poly(A) site choice in RNA production from complex adenovirus transcription units. EMBO J. 7:2107–2116.
  • Bardwell, V. J., M. Wickens, S. Bienroth, W. Keller, B. S. Sproat, and A. I. Lamond. 1991. Site-directed ribose methylation identifies 2′-OH groups in polyadenylation substrates critical for AAUAAA recognition and poly(A) addition. Cell 65:125–133.
  • Bienroth, S., W. Keller, and E. Wahle. 1993. Assembly of a processive messenger RNA polyadenylation complex. EMBO J. 12:585–594.
  • Bienroth, S., E. Wahle, C. Suter-Crazzolara, and W. Keller. 1991. Purification of the cleavage and polyadenylation factor involved in the 3′-processing of messenger RNA precursors. J. Biol. Chem. 266:19768–19776.
  • Black, D. L. 1995. Finding splice sites within a wilderness of RNA. RNA 1:763–771.
  • Boelens, W. C., E. J. R. Jansen, W. J. van Nenrooij, R. Stripecke, I. W. Mattaj, and S. I. Gunderson. 1993. The human U1 snRNP-specific U1A protein inhibits polyadenylation of its own pre-mRNA. Cell 72:881–892.
  • Chen, F., C. C. MacDonald, and J. Wilusz. 1995. Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res. 23:2614–2620.
  • Chou, Z.-F., F. Chen, and J. Wilusz. 1994. Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals. Nucleic Acids Res. 22:2525–2531.
  • Christofori, G., and W. Keller. 1989. Poly(A) polymerase purified from HeLa cell nuclear extract is required for both cleavage and polyadenylation of pre-mRNA in vitro. Mol. Cell. Biol. 9:193–203.
  • Conway, L., and M. Wickens. 1987. Analysis of mRNA 3′ end formation by modification interference: the only modifications which prevent processing lie in AAUAAA and the poly(A) site. EMBO J. 6:4177–4184.
  • Day, I. N. M. 1992. Analysis of the 5′-AAUAAA motif and its flanking sequence in human RNA: relevance to cDNA library sorting. Gene 110:245–249.
  • Duckett, D. R., A. I. H. Murchie, and D. M. J. Lilley. 1995. The global folding of four-way helical junctions in RNA, including that in U1 snRNA. Cell 83:1027–1036.
  • Gilmartin, G. M., E. S. Fleming, and J. Oetjen. 1992. Activation of HIV-1 pre-mRNA 3′ processing in vitro requires both an upstream element and TAR. EMBO J. 11:4419–4428.
  • Gilmartin, G. M., E. S. Fleming, J. Oetjen, and B. R. Graveley. 1995. CPSF recognition of an HIV-1 mRNA 3′-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev. 9:72–83.
  • Gilmartin, G. M., S.-L. Hung, J. D. DeZazzo, E. S. Fleming, and M. J. Imperiale. 1996. Sequences regulating poly(A) site selection within the adenovirus major late transcription unit influence the interaction of constitutive processing factors with the pre-mRNA. J. Virol. 70:1775–1783.
  • Gilmartin, G. M., and J. R. Nevins. 1989. An ordered pathway of assembly of components required for polyadenylation site recognition and processing. Genes Dev. 3:2180–2189.
  • Gimmi, E. R., M. E. Reff, and I. C. Deckman. 1989. Alterations in the pre-mRNA topology of the bovine growth hormone polyadenylation region decrease poly(A) site efficiency. Nucleic Acids Res. 17:6983–6998.
  • Graveley, B. R., and G. M. Gilmartin. 1996. A common mechanism for the enhancement of mRNA 3′ processing by U3 sequences in two distantly related lentiviruses. J. Virol. 70:1612–1617.
  • Gunderson, S. I., K. Beyer, G. Martin, W. Keller, W. C. Boelens, and I. W. Mattaj. 1994. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 76:531–541.
  • Jacques, J.-P., and M. M. Susskind. 1991. Use of electrophoretic mobility to determine the secondary structure of a small antisense RNA. Nucleic Acids Res. 19:2971–2977.
  • Keller, W. 1995. No end yet to messenger RNA 3′ processing! Cell 81:829–832.
  • Keller, W., S. Bienroth, K. M. Lang, and G. Christofori. 1991. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAA. EMBO J. 10:4241–4249.
  • Knapp, G. 1989. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 180:192–212.
  • Koenig, M., A. P. Monaco, and L. M. Kunkel. 1988. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–228.
  • LeCuyer, K. A., and D. M. Crothers. 1993. The Leptomonas collosoma spliced leader RNA can switch between two alternate structural forms. Biochemistry 32:5301–5311.
  • Levitt, N., D. Breggs, A. Gil, and N. J. Proudfoot. 1989. Definition of an efficient synthetic poly(A) site. Genes Dev. 3:1019–1025.
  • Lou, H., R. F. Gagel, and S. M. Berget. 1996. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 10:208–219.
  • Lutz, C. S., and J. C. Alwine. 1994. Direct interaction of the U1 snRNP-A protein with the upstream efficiency element of the SV40 late polyadenylation signal. Genes Dev. 8:576–586.
  • Lutz, C. S., K. G. K. Murthy, N. Schek, J. P. O’Connor, J. L. Manley, and J. C. Alwine. 1996. Interaction between the U1 snRNP-A protein and the 160-kD subunit of cleavage-polyadenylation specificity factor increases polyadenylation efficiency in vitro. Genes Dev. 10:325–337.
  • MacDonald, C. C., J. Wilusz, and T. Shenk. 1994. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNA downstream of the cleavage site and influences cleavage site location. Mol. Cell. Biol. 14:6647–6654.
  • Moreira, A., M. Wollerton, J. Monks, and N. J. Proudfoot. 1995. Upstream sequence elements enhance poly(A) site efficiency of the C2 complement gene and are phylogenetically conserved. EMBO J. 14:3809–3819.
  • Murthy, K. G. K., and J. L. Manley. 1992. Characterization of the multisub-unit cleavage-polyadenylation specificity factor from calf thymus. J. Biol. Chem. 267:14804–14811.
  • Niwa, M., and S. M. Berget. 1991. Mutation of the AAUAAA polyadenylation signal depresses in vitro splicing of proximal but not distal introns. Genes Dev. 5:2086–2095.
  • Niwa, M., S. D. Rose, and S. M. Berget. 1990. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4:1552–1559.
  • Peterson, M. L. 1992. Balanced efficiencies of splicing and cleavage-polyadenylation are required for µs and µm mRNA regulation. Gene Expr. 2:319–327.
  • Rüegsegger, U., K. Beyer, and W. Keller. 1996. Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J. Biol. Chem. 271:6107–6113.
  • Sheets, M. D., S. C. Ogg, and M. P. Wickens. 1990. Point mutations in AAUAAA and the poly(A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 18:5799–5805.
  • Takagaki, Y., J. L. Manley, C. C. MacDonald, J. Wilusz, and T. Shenk. 1990. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev. 4:2112–2120.
  • Takagaki, Y., L. C. Ryner, and J. L. Manley. 1989. Four factors are required for 3′-end cleavage of pre-mRNAs. Genes Dev. 3:1711–1724.
  • Tang, R. S., and D. E. Draper. 1990. Bulge loops used to measure the helical twist of RNA in solution. Biochemistry 29:5232–5327.
  • Tang, R. S., and D. E. Draper. 1994. Bend and helical twist associated with a symmetric internal loop from 5S ribosomal RNA. Biochemistry 33:10089–10093.
  • Valsamakis, A., N. Schek, and J. C. Alwine. 1992. Elements upstream of the AAUAAA within the human immunodeficiency virus polyadenylation signal are required for efficient polyadenylation in vitro. Mol. Cell. Biol. 12:3699–3705.
  • Valsamakis, A., S. Zeichner, S. Carswell, and J. C. Alwine. 1991. The human immunodeficiency virus type 1 polyadenylation signal: a 3′ long terminal repeat element upstream of the AAUAAA necessary for efficient polyade-nylylation. Proc. Natl. Acad. Sci. USA 88:2108–2112.
  • Wahle, E., G. Martin, E. Schiltz, and W. Keller. 1991. Isolation and expression of cDNA clones encoding mammalian poly(A) polymerase. EMBO J. 10:4251–4257.
  • Wahle, E. 1995. Poly(A) tail length control is caused by termination of processive synthesis. J. Biol. Chem. 270:2800–2808.
  • Wahle, E. 1995. 3′-End cleavage and polyadenylation of mRNA precursors. Biochim. Biophys. Acta 1261:183–194.
  • Weiss, E. A., G. M. Gilmartin, and J. R. Nevins. 1991. Poly(A) site efficiency reflects the stability of complex formation involving the downstream element. EMBO J. 10:215–219.
  • Wigley, P. L., M. D. Sheets, D. A. Zarkower, M. E. Whitmer, and M. Wickens. 1990. Polyadenylation of mRNA: minimal substrates and a requirement for the 2′ hydroxyl of the U in AAUAAA. Mol. Cell. Biol. 10:1705–1713.
  • Zarkower, D., and M. Wickens. 1987. Specific pre-cleavage and post-cleavage complexes involved in the formation of SV40 late mRNA 3′ termini in vitro. EMBO J. 6:4185–4192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.