8
Views
201
CrossRef citations to date
0
Altmetric
Research Article

Differential Activation of Target Cellular Promoters by p53 Mutants with Impaired Apoptotic Function

, &
Pages 4952-4960 | Received 12 Mar 1996, Accepted 03 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Abrahamson, J. L. A., J. M. Lee, and A. Bernstein. 1995. Regulation of p53-mediated apoptosis and cell cycle arrest by steel factor. Mol. Cell. Biol. 15:6953–6960.
  • Allday, M. J., G. J. Inman, D. H. Crawford, and P. J. Farrell. 1995. DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J. 14:4994–5005.
  • Baker, S. J., S. Markowitz, E. R. Fearon, J. K. V. Willson, and B. Vogelstein. 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915.
  • Banks, L., G. Matlashewski, and L. Crawford. 1986. Isolation of human p53 specific monoclonal antibodies and their use in the studies of human p53 expression. Eur. J. Biochem. 159:529–534.
  • Bates, S., and K. H. Vousden. 1996. p53 in signalling checkpoint arrest or apoptosis. Curr. Opin. Genet. Dev. 6:1–7.
  • Brugarolas, J., C. Chandrasekaran, J. I. Gordon, D. Beach, T. Jacks, and G. J. Hannon. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature (London) 377:552–556.
  • Buckbinder, L., R. Talbott, S. Velasco-Miguel, I. Takenaka, B. Faha, B. R. Seizinger, and N. Kley. 1995. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature (London) 377:646–649.
  • Caelles, C., A. Helmberg, and M. Karin. 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature (London) 370:220–223.
  • Canman, C. E., T. M. Gilmer, S. B. Coutts, and M. B. Kastan. 1995. Growth factor modulation of p53-mediated growth arrest versus apoptosis. Genes Dev. 9:600–611.
  • Chen, J. Y., W. D. Funk, W. E. Wright, J. W. Shay, and J. D. Minna. 1993. Heterogeneity of transcriptional activity of mutant p53 protein and p53 DNA target sequences. Oncogene 8:2159–2166.
  • Collins, M. K. L., J. Marvel, P. Malde, and A. Lopez-Rivas. 1992. Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J. Exp. Med. 176:1043–1051.
  • Crook, T., C. Fisher, P. J. Masterson, and K. H. Vousden. 1994. Modulation of transcriptional regulatory properties of p53 by HPV E6. Oncogene 9:1225–1230.
  • Crook, T., R. L. Ludwig, N. J. Marston, D. Willkomm, and K. H. Vousden. 1996. Sensitivity of p53 lysine mutants to ubiquitin-directed degradation trageted by human papillimavirus E6. Virology 217:285–292.
  • Crook, T., N. J. Marston, E. A. Sara, and K. H. Vousden. 1994. Transcrip-tional activation by p53 correlates with suppression of growth but not transformation. Cell 79:817–827.
  • Crook, T., and K. H. Vousden. 1992. Properties of p53 mutations detected in primary and secondary cervical cancers suggest mechanisms of metastasis and involvement of environmental carcinogens. EMBO J. 11:3935–3940.
  • Demers, G. W., S. A. Foster, C. L. Halbert, and D. A. Galloway. 1994. Growth arrest by induction of p53 in DNA damaged keratinocytes is bypassed by human papillomavirus 16 E7. Proc. Natl. Acad. Sci. USA 91:4382–4386.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and P. Leder. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.
  • Diller, L., J. Kassel, C. E. Nelson, M. A. Gryka, G. Ltwak, M. Gebhardt, B. Bressac, M. Ozturk, S. J. Baker, B. Vogelstein, and S. H. Friend. 1990. p53 functions as a cell cycle control protein in osteosarcomas. Mol. Cell. Biol. 10:5772–5781.
  • Donehower, L. A., M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Montgomery, Jr., J. S. Butel, and A. Bradley. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature (London) 356:215–221.
  • Dulic, V., W. K. Kaufmann, S. J. Wilson, T. D. Tlsty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023.
  • El-Deiry, W., T. Tokino, V. E. Velculescu, D. B. Levy, V. E. Parson, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumour suppression. Cell 75:817–825.
  • El-Deiry, W. S., S. E. Kern, J. A. Pietenpol, K. W. Kinzler, and B. Vogelstein. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45–49.
  • Fredersdorf, S., A. W. Milne, P. A. Hall, and X. Lu. 1996. Immunological analysis of Waf1/Cip1 protein expression in normal human tissues using a panel of novel monoclonal antibodies. Am. J. Pathol. 148:825–835.
  • Friedlander, P., Y. Haupt, C. Prives, and M. Oren. 1996. A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol. Cell. Biol. 16:4961–4971.
  • Gottlieb, E., R. Haffner, T. von Ruden, E. F. Wagner, and M. Oren. 1994. Down-regulation of wild-type p53 activity interferes with apoptosis of IL-3 dependent hematopoietic cells following IL-3 withdrawal. EMBO J. 13:1368–1374.
  • Harrington, E. A., M. R. Bennett, A. Fanidi, and G. I. Evan. 1994. c-myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13:3286–3295.
  • Haupt, Y., Y. Barak, and M. Oren. 1996. Cell type-specific inhibition of p53-mediated apoptosis by mdm2. EMBO J. 15:1596–1606.
  • Haupt, Y., S. Rowan, and M. Oren. 1995. p53-mediated apoptosis in HeLa cells can be overcome by excess pRB. Oncogene 10:1563–1571.
  • Haupt, Y., S. Rowan, E. Shaulian, K. H. Vousden, and M. Oren. 1995. Induction of apoptosis in HeLa cells by trans-activation deficient p53. Genes Dev. 9:2170–2183.
  • Hickman, E. S., S. M. Picksley, and K. H. Vousden. 1994. Cells expressing HPV16 E7 continue cell cycle progression following DNA damage induced p53 activation. Oncogene 9:2177–2181.
  • Hollstein, M., K. Rice, M. S. Greenblatt, T. Soussi, R. Fuchs, T. Sørlie, E. Hovig, B. Smith-Sørensen, R. Montesano, and C. C. Harris. 1994. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22:3551–3555.
  • Hupp, T. R., D. W. Meek, C. A. Midgley, and D. P. Lane. 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886.
  • Jacks, T., L. Remington, B. O. Williams, E. M. Schmitt, S. Halachmi, R. T. Bronson, and R. A. Weinberg. 1994. Tumour spectrum analysis in p53-mutant mice. Curr. Biol. 4:1–7.
  • Katayose, D., R. Wersto, K. H. Cowan, and P. Seth. 1995. Effects of a recombinant adenovirus expressing WAF1/Cip1 on cell growth, cell cycle and apoptosis. Cell Growth Differ 6:1207–1212.
  • Knudson, M. C., K. S. K. Tung, W. G. Tourtellotte, G. A. J. Brown, and S. J. Korsmeyer. 1995. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270:96–98.
  • Kobayashi, T., U. Consoli, M. Andreeff, H. Shiku, A. B. Deisseroth, and W. Zhang. 1995. Activation of p21WAF1/Cip1 expression by a temperature-sensitive mutant of human p53 does not lead to apoptosis. Oncogene 11:2311–2316.
  • Lam, E. W. F., and R. J. Waston. 1993. An E2F-binding site mediates cell-cycle regulation repression of mouse B-myb transcription. EMBO J. 12:2705–2713.
  • Lin, J., J. Chen, B. Elenbaas, and A. J. Levine. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcrip-tional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–1246.
  • Malkin, D., F. P. Li, L. C. Strong, J. F. Fraumeni, Jr., C. E. Nelson, D. H. Kim, J. Kassel, M. A. Gryka, F. Z. Bischoff, M. A. Tainsky, and S. H. Friend. 1990. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasias. Science 250:1233–1238.
  • Miyashita, T., S. Krajewski, M. Krajewska, H. G. Wang, H. K. Lin, D. A. Liebernmann, B. Hoffman, and J. C. Reed. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805.
  • Miyashita, T., and J. C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.
  • Owen-Schaub, L. B., W. Zhang, J. C. Cusack, L. S. Angelo, S. M. Santee, T. Fujiwara, J. A. Roth, A. B. Deisseroth, W.-W. Zhang, E. Kruzel, and R. Radinsky. 1995. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15:3032–3040.
  • Pietenpol, J. A., T. Tokino, S. Thiagaligam, W. El-Deiry, K. W. Kinzler, and B. Vogelstein. 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91:1998–2002.
  • Rowan, S., R. L. Ludwig, Y. Haupt, S. Bates, X. Lu, M. Oren, and K. H. Vousden. 1996. Specific loss of apoptotic but not cell cycle arrest function in a human tumour derived p53 mutant. EMBO J. 15:827–838.
  • Sabbatini, P., J. Lin, A. J. Levine, and E. White. 1995. Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev. 9:2184–2192.
  • Slebos, R. J. C., M. H. Lee, B. S. Plunkett, T. D. Kessis, B. O. Williams, T. Jacks, L. Hedrick, M. B. Kastan, and K. R. Cho. 1994. p53-dependent G(1) arrest involves pRB-related proteins and is disrupted by the human papillo-mavirus 16 E7 oncoprotein. Proc. Natl. Acad. Sci. USA 91:5320–5324.
  • Soussi, T., C. Caron de Fromentel, and P. May. 1990. Structural aspects of the p53 protein in relation to gene evolution. Oncogene 5:945–952.
  • Srivastava, S., Z. Zou, K. Pirollo, W. Blattner, and E. H. Chang. 1990. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature (London) 348:747–749.
  • Thukral, S. K., Y. Lu, G. Chad Blain, T. S. Harvey, and V. L. Jacobsen. 1995. Discrimination of DNA binding sites by mutant p53 proteins. Mol. Cell. Biol. 15:5196–5202.
  • Vojtesek, B., J. Bartek, C. A. Midgley, and D. P. Lane. 1992. An immuno-chemical analysis of the human nuclear phosphoprotein p53. J. Immunol. Methods 151:237–244.
  • Wagner, A. J., J. M. Kokontis, and N. Hay. 1994. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev. 8:2817–2830.
  • Waldman, T., K. W. Kinzler, and B. Vogelstein. 1995. p21 in necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55:5187–5190.
  • Wang, Y., and C. Prives. 1995. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature (London) 376:88–91.
  • Xiong, Y., G. J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach. 1993. p21 is a universal inhibitor of cyclin kinases. Nature (London) 366:701–704.
  • Yonish-Rouach, E., V. Deguin, T. Zaitchouk, C. Breugnot, Z. Mishal, J. R. Jenkins, and E. May. 1996. Transcriptional activation plays a role in the induction of apoptosis by transiently transfected wild-type p53. Oncogene 12:2197–2205.
  • Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature (London) 353:345–347.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.