15
Views
104
CrossRef citations to date
0
Altmetric
Research Article

Distinct Tyrosine Phosphorylation Sites in ZAP-70 Mediate Activation and Negative Regulation of Antigen Receptor Function

, , , , &
Pages 5026-5035 | Received 05 Apr 1996, Accepted 17 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Abraham, N. M., C. Miceli, J. R. Parnes and A. Veilette. 1991. Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature (London) 350:62–66.
  • Appleby, M. W., J. A. Gross, M. P. Cooke, S. D. Levin, X. Qian, and R. M. Perlmutter. 1992. Defective T cell receptor signaling in mice lacking the thymic isoform of p59fyn. Cell 70:751–763.
  • Arpaia, E., M. Shahar, H. Dadi, A. Cohen, and C. Roifman. 1994. Defective T cell receptor signaling and CD8+ thymic selection in humans lacking ZAP-70 kinase. Cell 76:947–958.
  • Boyle, W. J., P. van der Geer and T. Hunter. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:110–149.
  • Cambier, J. C., C. M. Pleiman, and M. R. Clark. 1994. Signal transduction by the B cell antigen receptor and its coreceptors. Annu. Rev. Immunol. 12:457–486.
  • Chan, A., D. M. Desai, and A. Weiss. 1994. Role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol. 14:555–592.
  • Chan, A., M. Iwashima, C. Turck, and A. Weiss. 1992. ZAP-70: a 70kD protein tyrosine kinase that associates with the TCR ζ-chain. Cell 71:649–662.
  • Chan, A., T. Kadlecek, M. Elder, A. Filipovich, J. Grey, M. Iwashima, T. Parslow, and A. Weiss. 1994. ZAP-70 protein tyrosine kinase deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264:1599–1601.
  • Chan, A., N. Van Oers, A. Tran, L. Turka, C.-L. Law, J. Ryan, E. Clark, and A. Weiss. 1994. Differential expression of ZAP-70 and Syk protein tyrosine kinases and role of this family of PTKs in T cell antigen receptor signaling. J. Immunol. 152:4758–4766.
  • Chan, A. C., M. Dalton, R. Johnson, G.-H. Kong, T. Wang, R. Thoma, and T. Kurosaki. 1995. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 14:2499–2508.
  • Cheng, A. M., R. B. Rowley, W. Pao, A. Hayday, J. B. Bolen, and T. Pawson. 1995. Syk tyrosine kinase required for mouse viability and B-cell development. Nature (London) 378:303–306.
  • Couture, C., G. Baier, A. Altman, and T. Mustelin. 1994. p56lck-independent activation and tyrosine phosphorylation of p72syk by T-cell antigen receptor/ CD3 stimulation. Proc. Natl. Acad. Sci. USA 91:5301–5305.
  • Duplay, P., M. Thome, F. Herve, and O. Acuto. 1994. p56lck interacts via its src homology 2 domain with the ZAP-70 kinase. J. Exp. Med. 179:1163–1172.
  • Elder, M., D. Lin, J. Clever, A. Chan, T. Hope, A. Weiss and T. Parslow. 1994. Human severe combined immunodeficiency due to a defect in ZAP-70—a T-cell receptor-associated tyrosine kinase. Science 264:1596–1599.
  • Fields, P. E., T. F. Gajewski, and F. W. Fitch. 1996. Blocked ras activation in anergic CD4+ T cells. Science 271:1276–1278.
  • Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89:5547–5551.
  • Hubbard, S. R., L. Wei, L. Ellis, and W. A. Hendrickson. 1994. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature (London) 372:746–754.
  • Imboden, J. B., A. Weiss and J. D. Stobo. 1985. The antigen receptor on a human T cell line initiates activation by increasing cytoplasmic free calcium. J. Immunol. 134:663–665.
  • Iwashima, M., B. Irving, N. van Oers, A. Chan, and A. Weiss. 1994. The sequential interaction of two cytoplasmic protein tyrosine kinases in T cell antigen receptor signaling. Science 263:1163–1139.
  • Izquierdo Pastor, M., K. Rief, and D. Cantrell. 1995. The regulation and function of p21ras during T-cell activation and growth. Immunol. Today 16:159–164.
  • Karnitz, L., S. L. Sutor, T. Torigoe, J. C. Reed, M. P. Bell, D. J. McKean, P. J. Leibson, and R. T. Abraham. 1992. Effects of p56lck deficiency on the growth and cytolytic effector function of an interleukin-2 dependent cytotoxic T-cell line. Mol. Cell. Biol. 12:4521–4530.
  • Katzav, S., M. Sutherland, G. Packham, T. Yi, and A. Weiss. 1994. The protein tyrosine kinase ZAP-70 can associate with the SH2 domain of proto-Vav. J. Biol. Chem. 269:32579–32585.
  • Kong, G. H., J. Y. Bu, T. Kurosaki, A. S. Shaw, and A. C. Chan. 1995. Reconstitution of syk function by the ZAP-70 protein tyrosine kinase. Immunity 2:485–492.
  • Kurosaki, T., M. Takata, Y. Yamanashi, T. Inazu, T. Taniguchi, T. Yamamoto, and H. Yamamura. 1994. Syk activation by the Src-family tyrosine kinase in the B cell receptor signaling. J. Exp. Med. 179:1725–1729.
  • Li, W., C. D. Whaley, A. Mondino, and D. L. Mueller. 1996. Blocked signal transduction to the erk and JNK protein kinases in anergic CD4+ T cells. Science 271:1272–1276.
  • Luo, K., T. R. Hurley, and B. M. Sefton. 1991. Cyanogen bromide cleavage and proteolytic peptide mapping of proteins immobilized to membranes. Methods Enzymol. 201:149–152.
  • Luo, K., and B. M. Sefton. 1992. Activated lck tyrosine protein kinase stimulates antigen-independent interleukin-2 production in T cells. Mol Cell Biol. 12:4724–4732.
  • Molina, T. J., K. Kishihara, D. P. Siderovski, W. van Ewijk, A. Narendran, E. Timms, A. Wakeham, C. J. Paige, K. U. Hartmann, A. Veillette, D. Davidson, and T. W. Mak. 1992. Profound block in thymocyte development in mice lacking p56lck. Nature (London) 357:161–164.
  • Negishi, I., N. Motoyama, K.-I. Nakayama, K. Nakayama, S. Senju, S. Hatakeyama, Q. Zhang, A. C. Chan, and D. Y. Loh. 1995. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature (London) 376:435–438.
  • Neumeister, E. N., Y. Zhu, S. Richard, C. Terhorst, A. C. Chan, and A. S. Shaw. 1995. Binding of ZAP-70 to phosphorylated T-cell receptor ζ and η enhances its autophosphorylation and generates specific binding sites for SH2 domain-containing proteins. Mol. Cell. Biol. 15:3171–3178.
  • Niklinska, B. B., H. Yamada, J. J. O’Shea, C. H. June, and J. D. Ashwell. 1992. Tyrosine kinase-regulated and inositol phosphate-independent Ca2+ elevation and mobilization in T cells. J. Biol. Chem. 267:7154–7159.
  • O’Shea, J. J., J. D. Ashwell, T. L. Bailey, S. L. Cross, L. E. Samelson, and R. D. Klausner. 1991. Expression of v-src in a murine T-cell hybridoma results in constitutive T-cell receptor phosphorylation and interleukin 2 production. Proc. Natl. Acad. Sci. USA 88:1741–1745.
  • Rowley, R. B., A. L. Burkardt, H.-G. Chao, G. R. Matsueda, and J. B. Bolen. 1995. Syk protein-tyrosine kinase is regulated by tyrosine-phosphorylated Igα/Igβ immunoreceptor tyrosine activation motif binding and autophosphorylation. J. Biol. Chem. 270:11590–11594.
  • Shiue, L., M. J. Zoller, and J. S. Brugge. 1995. Syk is activated by phospho-tyrosine-containing peptides representing the tyrosine-based activation motifs of the high affinity receptor for IgE. J. Biol. Chem. 270:10498–10502.
  • Stein, P. L., H.-M. Lee, S. Rich, and P. Soriano. 1992. pp59fyn mutant mice display differential signalling in thymocyte and peripheral T cells. Cell 70:741–750.
  • Straus, D., and A. Weiss. 1992. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor. Cell 70:585–593.
  • Sullivan, S., and T. W. Wong. 1991. A manual sequencing method for identification of phosphorylated amino acids in phosphopeptides. Anal. Bio-chem. 197:65–68.
  • Takata, M., H. Sabe, H. A. T. Inazu, Y. Homma, T. Nukada, H. Yamamura, and T. Kurosaki. 1994. Tyrosine kinases lyn and syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13:1341–1349.
  • Turner, M., P. J. Mee, P. S. Costello, O. Williams, A. A. Price, L. P. Duddy, M. T. Furlong, R. L. Geahlen, and V. L. J. Tybulewicz. 1995. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature (London) 378:298–302.
  • van Oers, N. S. C., N. Killeen, and A. Weiss. 1995. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR ζ in murine thymocytes and lymph node T cells. Immunity 1:675–685.
  • Wange, R. L., R. Guitian, N. Isakov, J. D. Watts, R. Aebersold, and L. E. Samelson. 1995. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70. J. Biol. Chem. 270:18730–18733.
  • Watts, J. D., M. Affolter, D. L. Krebs, R. L. Wange, L. E. Samelson, and R. Aebersold. 1994. Identification by electrospray ionization mass spectrometry of the sites of tyrosine phosphorylation induced in activated Jurkat T cells on the protein tyrosine kinase ZAP-70. J. Biol. Chem. 25:29520–29529.
  • Weiss, A., and D. R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76:263–274.
  • Zhang, B., J. M. Tavare, L. Ellis, and R. A. Roth. 1991. The regulatory role of known tyrosine autophosphorylation sites of the insulin receptor kinase domain. J. Biol. Chem. 266:990–996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.