23
Views
91
CrossRef citations to date
0
Altmetric
Research Article

E-Box Sites and a Proximal Regulatory Region of the Muscle Creatine Kinase Gene Differentially Regulate Expression in Diverse Skeletal Muscles and Cardiac Muscle of Transgenic Mice

, , &
Pages 5058-5068 | Received 12 Feb 1996, Accepted 06 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Amacher, S. L., J. N. Buskin, and S. D. Hauschka. 1993. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol. Cell. Biol. 13:2753–2764.
  • Apone, S., and S. D. Hauschka. 1995. Muscle gene E-box control elements: evidence for quantitatively different transcriptional activities and the binding of distinct regulatory factors. J. Biol. Chem. 270:21420–21427.
  • Ausoni, S., L. Gorza, S. Schiaffino, K. Gundersen, and T. Lomo. 1990. Expression of myosin heavy chain isoforms in stimulated fast and slow rat muscles. J. Neurosci. 10:153–160.
  • Bannerjee-Basu, S., and A. Buonanno. 1994. Isolation of structure of the rat gene encoding troponin I (slow). Gene 145:241–244.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Brouillette, R. T., and B. T. Thach. 1980. Control of genioglossus muscle inspiratory activity. J. Appl. Physiol. 49:801–808.
  • Buskin, J. N., and S. D. Hauschka. 1989. Identification of a myocyte-specific nuclear factor that binds to the muscle-specific enhancer of the mouse muscle creatine kinase gene. Mol. Cell. Biol. 9:2627–2640.
  • Chamberlain, J. S., J. B. Jaynes, and S. D. Hauschka. 1985. Regulation of creatine kinase induction in differentiating mouse myoblasts. Mol. Cell. Biol. 5:484–492.
  • Chen, C. Y., and R. J. Schwartz. 1995. Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J. Biol. Chem. 270:15628–15633.
  • Chien, K. R., H. Zhu, K. U. Knowlton, W. Miller-Hance, M. van-Bilsen, T. X. O’Brien, and S. M. Evans. 1993. Transcriptional regulation during cardiac growth and development. Annu. Rev. Physiol. 55:77–95.
  • Christensen, T. H., H. Prentice, R. Gahlmann, and L. Kedes. 1993. Regulation of the human cardiac/slow-twitch troponin C gene by multiple, cooperative, cell-type-specific, and MyoD-responsive elements. Mol. Cell. Biol. 13:6752–6765.
  • Cox, G. A., N. M. Cole, K. Matsumura, S. F. Phelps, S. D. Hauschka, K. P. Campbell, J. A. Faulkner, and J. S. Chamberlain. 1993. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature (London) 364:725–729.
  • Daood, M. (Magee Woman’s Hospital, Pittsburgh, Pa.). Unpublished data.
  • DiMario, J. X., S. E. Fernyak, and F. E. Stockdale. 1993. Myoblasts transferred to the limbs of embryos are committed to specific fibre fates. Nature (London) 362:165–167.
  • Donoghue, M. J., and J. R. Sanes. 1994. All muscles are not created equal. Trends Genet. 10:396–401.
  • Donoviel, D. B., M. A. Shield, J. N. Buskin, H. S. Haugen, C. H. Clegg, and S. D. Hauschka. 1996. Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscle of transgenic mice. Mol. Cell. Biol. 16:1649–1658.
  • Edmondson, D. G., and E. N. Olson. 1993. Helix-loop-helix proteins as regulators of muscle-specific transcription. J. Biol. Chem. 268:755–758.
  • Evans, S. M., and T. X. O’Brien. 1993. Expression of the helix-loop-helix factor Id during mouse embryonic development. Dev. Biol. 159:485–499.
  • Goldspink, G., A. Scutt, P. T. Loughna, D. J. Wells, T. Jaenicke, and G. F. Gerlach. 1992. Gene expression in skeletal muscle in response to stretch and force generation. Am. J. Physiol. 262:R356–R363.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and E. N. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Gunning, P., and E. Hardeman. 1991. Multiple mechanisms regulate muscle fiber diversity. FASEB J. 5:3063–3070.
  • Hallauer, P. L., H. L. Bradshaw, and K. E. M. Hastings. 1993. Complex fiber-type-specific expression of fast skeletal muscle troponin I gene constructs in transgenic mice. Development 119:691–701.
  • Hamalainen, N., and D. Pette. 1993. The histochemical profiles of fast fiber types IIB, IID, and IIA in skeletal muscles of mouse, rat, and rabbit. J. His-tochem. Cytochem. 41:733–743.
  • Hogan, B., F. Constantini, and E. Lacy. 1986. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hollenberg, S. M., R. Sternglanz, P. F. Cheng, and H. Weintraub. 1995. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15:3813–3822.
  • Horlick, R. A., and P. A. Benfield. 1989. The upstream muscle-specific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396–2413.
  • Hughes, S. M., J. M. Taylor, S. J. Tapscott, C. M. Gurley, W. J. Carter, and C. A. Peterson. 1993. Selective accumulation of MyoD and myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118:1137–1147.
  • Jackson, P., M. Shield, J. Buskin, S. Hawkes, M. Reed, K. Perrem, S. Hauschka, and A. Braithwaite. 1995. p53-dependent activation of the mouse MCK gene promoter: identification of a novel p53-responsive sequence and evidence for cooperation between distinct p53 binding sites. Gene Expression 5:19–33.
  • Jaenisch, R. 1988. Transgenic animals. Science 240:1468–1474.
  • Jaynes, J. B., J. S. Chamberlain, J. N. Buskin, J. E. Johnson, and S. D. Hauschka. 1986. Transcriptional regulation of the muscle creatine kinase gene and regulated expression in transfected mouse myoblasts. Mol. Cell. Biol. 6:2855–2864.
  • Jaynes, J. B., J. E. Johnson, J. N. Buskin, C. L. Gartside, and S. D. Hauschka. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol. Cell. Biol. 8:62–70.
  • Johnson, J., B. J. Wold, and S. D. Hauschka. 1989. Muscle creatine kinase sequence elements regulating skeletal and cardiac muscle expression in transgenic mice. Mol. Cell. Biol. 9:3393–3399.
  • Johnson, J. E. 1988. Ph.D. thesis. University of Washington, Seattle.
  • Karpati, G., and G. Acsadi. 1993. The potential for gene therapy in Duch-enne muscular dystrophy and other genetic muscle diseases. Muscle Nerve 16:1141–1153.
  • Knotts, S., H. Rindt, J. Neumann, and J. Robbins. 1994. In vivo regulation of the mouse β myosin heavy chain gene. J. Biol. Chem. 269:31275–31282.
  • Kurabayashi, M., R. Jeyaseelan, and L. Kedes. 1993. Two distinct cDNA sequences encoding the human helix-loop-helix protein Id2. Gene 133:305–306.
  • Kushmerick, M. Unpublished data.
  • LaFramboise, W. A., J. F. Watchko, B. S. Brozanski, M. J. Daood, and R. D. Guthrie. 1992. Myosin heavy chain expression in respiratory muscles of the rat. Am. J. Respir. Cell Mol. Biol. 6:335–339.
  • Lassar, A. B., J. N. Buskin, D. Lockshon, R. L. Davis, S. Apone, S. D. Hauschka, and H. Weintraub. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58:823–831.
  • Lints, T. J., L. M. Parsons, L. Hartley, I. Lyons, and R. P. Harvey. 1993. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic decendants. Development 119:419–431.
  • Litvin, J., M. O. Montgomery, D. J. Goldhamer, C. P. Emerson, and D. M. Bader. 1993. Identification of DNA-binding protein(s) in the developing heart. Dev. Biol. 156:409–417.
  • Miller, J. B., E. A. Everitt, T. H. Smith, N. E. Block, and J. A. Dominov. 1993. Cellular and molecular diversity in skeletal muscle development: news from in vitro and in vivo. Bioessays 15:191–196.
  • Molkentin, J. D., R. S. Brogan, S. M. Jobe, and B. E. Markam. 1993. Expression of the α-myosin heavy chain gene in the heart is regulated in part by an E-box-dependent mechanism. J. Biol. Chem. 268:2602–2609.
  • Murre, C., P. S. McCaw, H. Vaessin, M. Caudy, L. Y. Jan, Y. N. Jan, C. V. Cabrera, J. N. Buskin, S. D. Hauschka, A. B. Lassar, H. Weintraub, and D. Baltimore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544.
  • Muscat, G. E., L. Mynett-Johnson, D. Dowhan, M. Downes, and R. Griggs. 1994. Activation of myoD gene transcription by 3,5,3′-triiodo-L-thyronine: a direct role for the thyroid hormone and retinoid receptors. Nucleic Acids Res. 22:583–591.
  • Navankasattusas, S., M. Sawadogo, M. van Bilsen, C. V. Dang, and K. R. Chien. 1994. The basic helix-loop-helix protein upstream stimulating factor regulates the cardiac ventricular myosin light-chain 2 gene via independent cis regulatory elements. Mol. Cell. Biol. 14:7331–7339.
  • Olson, E. N., and W. H. Klein. 1994. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8:1–8.
  • Onal, E., M. Lopata, and T. D. O’Connor. 1981. Diaphragmatic and genioglossal electromyogram responses to CO2 rebreathing in humans. J. Appl. Physiol. 50:1052–1055.
  • Palmiter, R. D., and R. L. Brinster. 1986. Germ-line transformation of mice. Annu. Rev. Genet. 20:465–499.
  • Pari, G., K. Jardine, and M. W. McBurney. 1991. Multiple CArG boxes in the human cardiac actin gene promoter required for expression in embryonic cardiac muscle cells developing in vitro from embryonal carcinoma cells. Mol. Cell. Biol. 11:4796–4803.
  • Parmacek, M. S., H. S. Ip, F. Jung, T. Shen, J. F. Martin, A. J. Vora, E. N. Olson, and J. M. Leiden. 1994. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscles. Mol. Cell. Biol. 14:1870–1885.
  • Pette, D., and R. S. Staron. 1990. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol. 116:1–76.
  • Ragot, T., N. Vincent, P. Chafey, E. Vigne, H. Gilgenkrantz, D. Couton, J. Cartaud, P. Briand, J. C. Kaplan, M. Perricaudet, and A. Kahn. 1993. Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice. Nature (London) 361:647–650.
  • Rindt, H., S. Knotts, and J. Robbins. 1995. Segregation of cardiac and skeletal muscle-specific regulatory elements of the β-myosin heavy chain gene. Proc. Natl. Acad. Sci. USA 92:1540–1544.
  • Rosner, B. 1990. Fundamentals of biostatistics, 3rd ed., p. 304–308 and Appendix 1. PWS-KENT Publishing, Boston.
  • Salminen, M., P. Maire, J.-P. Concordet, C. Moch, A. Porteu, A. Kahn, and D. Daegelen. 1994. Fast-muscle-specific expression of human aldolase A transgenes. Mol. Cell. Biol. 14:6797–6808.
  • Salminen, M., S. Lopez, P. Maire, A. Kahn, and D. Daegelen. 1996. Fast-muscle-specific DNA-protein interactions occurring in vivo at the human aldolase A M promoter are necessary for correct promoter activity in transgenic mice. Mol. Cell. Biol. 16:76–85.
  • Sartorelli, V., N. A. Hong, N. H. Bishopric, and L. Kedes. 1992. Myocardial activation of the human cardiac α-actin promoter by helix-loop-helix proteins. Proc. Natl. Acad. Sci. USA 89:4047–4051.
  • Schiaffino, S., and C. Reggiani. 1994. Myosin isoforms in mammalian skeletal muscle. J. Appl. Physiol. 77:493–501.
  • Shaw, W. V., and R. F. Brodsky. 1968. Characterization of chloramphenicol acetyltransferase from chloramphenicol-resistant Staphylococcus aureus. J. Bacteriol. 95:28–36.
  • Springhorn, J. P., K. Singh, R. A. Kelly, and T. W. Smith. 1994. Posttran-scriptional regulation of Id1 activity in cardiac muscle. Alternative splicing of novel Id1 transcript permits homodimerization. J. Biol. Chem. 269:5132–5136.
  • Srivastava, D., P. Cserjesi, and E. N. Olson. 1995. A subclass of bHLH proteins required for cardiac morphogenesis. Science 270:1995–1999.
  • Sternberg, E. A., G. Spizsz, W. M. Perry, D. Vizard, T. Weil, and E. N. Olson. 1988. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene. Mol. Cell. Biol. 8:2896–2909.
  • Trask, R. V., A. W. Strauss, and J. J. Billadello. 1988. Developmental regulation and tissue-specific expression of the human muscle creatine kinase gene. J. Biol. Chem. 263:17142–17149.
  • Tsicka, R. W., S. D. Hauschka, and L. Gao. 1995. M-creatine kinase gene expression in mechanically overloaded skeletal muscle of transgenic mice. Am. J. Physiol. 269:C665–C674.
  • Vincent, C. K., A. Gualberto, C. V. Patel, and K. Walsh. 1993. Different regulatory sequences control creatine kinase-M gene expression in directly injected skeletal and cardiac muscle. Mol. Cell. Biol. 13:1264–1272.
  • Voytik, S. L., M. Przyborski, S. F. Badylak, and S. F. Konieczny. 1993. Differential expression of muscle regulatory factor genes in normal and denervated adult rat hindlimb muscles. Dev. Dyn. 198:214–228.
  • Weintraub, H. 1993. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244.
  • Wenderoth, M. P., M. A. Shield, and S. D. Hauschka. Unpublished data.
  • Wigston, D. J., and A. W. English. 1992. Fiber-type proportions in mammalian soleus muscle during postnatal development. J. Neurobiol. 23:61–70.
  • Yamashita, K., and T. Yoshioka. 1991. Profiles of creatine kinase isoenzyme compositions in single muscle fibers of different types. J. Muscle Res. Cell Motil. 12:37–44.
  • Yi, T.-M., K. Walsh, and P. Schimmel. 1991. Rabbit muscle creatine kinase: genomic cloning, sequencing, and analysis of upstream sequences important for expression in myocytes. Nucleic Acids Res. 19:3027–3033.
  • Zhao, J., F. I. Schmieg, D. T. Simmons, and G. R. Molloy. 1994. Mouse p53 represses the rat brain creatine kinase gene but activates the rat muscle creatine kinase gene. Mol. Cell. Biol. 14:8483–8492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.