9
Views
69
CrossRef citations to date
0
Altmetric
Research Article

A DEAD-Box-Family Protein Is Required for Nucleocytoplasmic Transport of Yeast mRNA

, , , &
Pages 5139-5146 | Received 09 Apr 1996, Accepted 03 Jun 1996, Published online: 29 Mar 2023

REFERENCES

  • Amberg, D., A. Goldstein, and C. Cole. 1992. Isolation and characterization of RAT1: and essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficing of mRNA. Genes Dev. 6:1173–1189.
  • Berg, C. M., N. Vartak, G. Wang, X. Xu, L. Liu, D. MacNeil, K. Gewain, L. Wiater, and D. Berg. 1992. The mγδ-1 element, a small γδ (Tn1000) derivative useful for plasmid mutagenesis, allele replacement and DNA sequencing. Gene 113:9–16.
  • Bonneaud, N., O. Ozier-Kalogeropoulos, G. Li, M. Labouesse, L. Minvielle-Sebastia, and F. Lacroute. 1991. A family of low and high copy replicative, integrative and single-strand S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615.
  • Bossie, M., C. DeHoratius, G. Bartcelo, and P. Silver. 1992. A mutant nuclear protein with similarity to RNA binding proteins interferes with nuclear import in yeast. Mol. Biol. Cell 3:875–893.
  • Chang, T.-H., J. Arenas, and J. Abelson. 1990. Identification of five putative yeast RNA helicase genes. Proc. Natl. Acad. Sci. USA 87:1571–1575.
  • Cheng, Y., J. Dahlberg, and E. Lund. 1995. Diverse effects of the guanine nucleotide exchange factor RCC1 on RNA transport. Science 267:1807–1810.
  • Dangel, A. W., L. Shen, A. R. Mendoza, L.-C. Wu, and C. Y. Yu. 1995. Human helicase gene SKI2W in the HLA class III region exhibits striking structural similarities to the yeast antiviral gene SKI2 and to the human gene KIAA0052: emergence of a new gene family. Nucleic Acids Res. 23:2120–2126.
  • Davis, L. I. 1995. The nuclear pore complex. Annu. Rev. Biochem. 64:865–896.
  • Dreyfuss, G., M. J. Matunis, S. Pinol-Roma, and C. G. Burd. 1993. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62:289–321.
  • Flores-Rozas, H., and J. Hurwitz. 1993. Characterization of a new RNA helicase from nuclear extracts of HeLa cells which translocates in the 5′ to 3′ direction. J. Biol. Chem. 268:21372–21383.
  • Fujiwara, Y., T. Komiya, H. Kawabata, M. Sato, H. Fujioto, M. Furusawa, and T. Noce. 1994. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl. Acad. Sci. USA 91:12258–12262.
  • Guo, Z., and F. Sherman. 1995. 3′-end-forming signals of yeast mRNA. Mol. Cell. Biol. 15:5983–5990.
  • Iost, I., and M. Dreyfus. 1994. mRNAs can be stabilized by DEAD-box proteins. Nature (London) 372:193–196.
  • Izzauralde, E., and I. Mattaj. 1995. RNA export. Cell 81:153–160.
  • Jaramillo, M., T. E. Dever, W. C. Merrick, and N. Sonenberg. 1991. RNA unwinding in translation: assembly of helicase complex intermediates comprising eukaryotic initiation factors eIF-4F and eIF-4B. Mol. Cell. Biol. 11:5992–5997.
  • Jarmolowski, A., W. C. Boelens, E. Izzaurralde, and I. W. Mattaj. 1994. Nuclear export of different classes of RNA is mediated by specific factors. J. Cell Biol. 124:627–635.
  • Jones, E. W. 1991. Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol. 194:428–453.
  • Kadowaki, T., S. Chen, M. Hitomi, E. Jacobs, C. Kumagai, S. Liang, R. Schneiter, D. Singleton, J. Wisniewska, and A. M. Tartakoff. 1994. Isolation and characterization of Saccharomyces cerevisiae mRNA transport-defective (mtr) mutants. J. Cell Biol. 126:649–659.
  • Kadowaki, T., M. Hitomi, S. Chen, and A. M. Tartakoff. 1994. Nuclear mRNA accumulation causes nucleolar fragmentation in yeast mtr2 mutant. Mol. Biol. Cell 5:1253–1263.
  • Kadowaki, T., R. Schneiter, M. Hitomi, and A. M. Tartakoff. 1995. Mutations in nucleolar proteins lead to nucleolar accumulation of polyA+RNA in Saccharomyces cerevisiae. Mol. Biol. Cell 6:1103–1110.
  • Lee, G.-C., and J. Hurwitz. 1992. A new helicase isolated from HeLa cells that catalyticaly translocates in the 3′ to 5′ direction. J. Biol. Chem. 267:4398–4407.
  • Lee, S.-G., I. Lee, S. H. Park, C. Kang, and K. Song. 1995. Identification and characterization of a human cDNA homologous to yeast SKI2. Genomics 25:660–666.
  • Masison, D., A. Blanc, J. C. Ribas, K. Carroll, N. Sonenberg, and R. B. Wickner. 1995. Decoying the Cap− mRNA degradation system by a double-stranded RNA virus and poly(A)− mRNA surveillance by a yeast antiviral system. Mol. Cell. Biol. 15:2763–2771.
  • Munroe, S. H., and X. Dong. 1992. Heterogeneous nuclear ribonucleoprotein A1 catalyzes RNA-RNA annealing. Proc. Natl. Acad. Sci. USA 89:895–899.
  • Nomura, N., et al. Unpublished data.
  • Oberosler, P., P. Hloch, U. Ramsperger, and H. Stahl. 1993. p53-catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 12:2389–2396.
  • Pause, A., N. Methot, and N. Sonenberg. 1993. The HRIGRXXR region of the DEAD box RNA helicase eukaryotic translation initiation factor 4A is required for RNA binding and ATP hydrolysis. Mol. Cell. Biol. 13:6789–6798.
  • Plumpton, M., M. McGarvey, and J. D. Beggs. 1994. A dominant negative mutation in the conserved RNA helicase motif SAT causes splicing factor PRP2 to stall in spliceosomes. EMBO J. 13:879–887.
  • Ripmaster, T. L., G. P. Vaughn, and J. L. Woolford, Jr. 1992. A putative ATP-dependent RNA helicase involved in Saccharomyces cerevisiae ribo-some assembly. Proc. Natl. Acad. Sci. USA 89:11131–11135.
  • Rose, M. D., and J. R. Broach. 1991. Cloning genes by complementation in yeast. Methods Enzymol. 194:195–230.
  • Ruby, S. W., and J. Abelson. 1991. Pre-mRNA splicing in yeast. Trends Genet. 7:79–85.
  • Russell, I., and D. Tollervey. 1995. Yeast Nop3p has structural and functional similarities to mammalian pre-mRNA binding proteins. Eur. J. Cell Biol. 66:293–301.
  • Sachs, A. B., and R. W. Davis. 1990. Translation initiation and ribosomal biogenesis: involvement of a putative rRNA helicase and RPL46. Science 247:1077–1079.
  • Schiestl, R., and R. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as carrier. Curr. Genet. 16:339–346.
  • Schmid, S. R., and P. Linder. 1992. D-E-A-D protein family of putative RNA helicases. Mol. Microbiol. 6:283–292.
  • Schneiter, R., et al. Unpublished data.
  • Schneiter, R., T. Kadowaki, and A. M. Tartakoff. 1995. mRNA transport in yeast: time to reinvestigate the functions of the nucleolus. Mol. Biol. Cell 6:357–370.
  • Schroder, H. C., D. Ugarkovic, P. Langen, M. Bachmann, A. Dorn, Y. Kuchino, and W. E. G. Muller. 1990. Evidence for involvement of a nuclear envelope-associated RNA helicase activity in nucleocytoplasmic RNA transport. J. Cell. Physiol. 145:136–146.
  • Shuman, S. 1992. Vaccinia virus RNA helicase: an essential enzyme related to the DE-H family of RNA-dependent NTPases. Proc. Natl. Acad. Sci. USA 89:10935–10939.
  • Sikorski, R., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Singleton, D. R., S. Chen, M. Hitomi, C. Kumagai, and A. M. Tartakoff. 1995. A yeast protein that bidirectionally affects nucleocytoplasmic transport. J. Cell Sci. 108:265–272.
  • Strauss, E. J., and C. Guthrie. 1991. A cold-sensitive mRNA splicing mutant is a member of the RNA helicase gene family. Genes Dev. 5:629–641.
  • Tani, T., R. Derby, Y. Hiraoka, and D. Spector. 1995. Nucleolar accumulation of poly(A)+ RNA in heat-shocked yeast cells: implication of nucleolar involvement in mRNA transport. Mol. Biol. Cell 6:1515–1534.
  • Visa, N., A. Alzhanova-Ericsson, X. Sun, E. Kiseleva, B. Bjorkroth, T. Wurtz, and B. Daneholt. 1996. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84:253–264.
  • Wahle, E., and W. Keller. 1992. The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu. Rev. Biochem. 61:419–440.
  • Widner, W. R., and R. B. Wickner. 1993. Evidence that the SKI antiviral system of Saccharomyces cerevisiae acts by blocking expression of viral mRNA. Mol. Cell. Biol. 13:4331–4341.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.