5
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Centromere Protein B of African Green Monkey Cells: Gene Structure, Cellular Expression, and Centromeric Localization

, , , , , , & show all
Pages 5169-5177 | Received 26 Feb 1996, Accepted 20 May 1996, Published online: 29 Mar 2023

REFERENCES

  • Alexandrov, I. A., T. D. Mashkova, T. A. Akopian, L. I. Medledev, L. L. Kisselev, S. P. Mitkevich, and Y. B. Yurov. 1991. Chromosome-specific alpha satellites: two distinct families on human chromosome 18. Genomics 11:15–23.
  • Baker, R. E., M. Fitzgerald-Hayes, and T. C. O’Brien. 1989. Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J. Biol. Chem. 264:10843–10850.
  • Brinkley, B. R., M. M. Valdivia, A. Tousson, and R. D. Balczon. 1989. The kinetochore: structure and molecular organization, p. 77–118. In J. S. Hyams and B. R. Brinkley (ed.), Mitosis: molecules and mechanisms. Academic Press, Orlando, Fla.
  • Brinkley, B. R., M. M. Valdivia, A. Tousson, and S. L. Renner. 1984. Compound kinetochores of the Indian muntjac: evolution by linear function of unit kinetochores. Chromosoma 91:1–11.
  • Chikashige, Y., N. Kinoshita, Y. Nakaseko, T. Matsumoto, S. Murakami, O. Niwa, and M. Yanagida. 1989. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57:739–751.
  • Clarke, L. 1990. Centromeres of budding and fission yeasts. Trends Genet. 6:150–154.
  • Clarke, L., and J. Carbon. 1980. Isolation of a yeast centromere and con- struction of functional small circular chromosomes. Nature (London) 287:504–509.
  • Doheny, K. F., P. K. Sorger, A. A. Hyman, S. Tugendreich, F. Spencer, and P. Hieter. 1993. Identification of essential components of the S. cerevisiae kinetochore. Cell 73:761–774.
  • Earnshaw, W. C., and N. Rothfield. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321.
  • Earnshaw, W. C., K. F. Sullivan, P. S. Machlin, C. A. Cooke, D. A. Kaiser, T. D. Pollard, N. F. Rothfield, and D. W. Cleveland. 1987. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J. Cell Biol. 104:817–829.
  • Ge, Y., M. J. Wagner, M. Siciliano, and D. E. Wells. 1992. Sequence, higher order repeat structure, and long-range organization of alpha satellite DNA specific to chromosome 8. Genomics 13:585–593.
  • Goh, P., and J. V. Kilmartin. 1993. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121:503–512.
  • Goldberg, I. G., H. Sawhney, A. F. Pluta, P. E. Warburton, and W. C. Earnshaw. 1996. Surprising deficiency of CENP-B binding sites in African green monkey a-satellite DNA: implications for CENP-B function at centromeres. Mol. Cell. Biol. 16:5156–5168.
  • Hahnenberger, K. M., M. P. Baum, C. M. Polizzi, J. Carbon, and L. Clarke. 1989. Construction of functional artificial minichromosomes in the fission yeast Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 86:577–581.
  • Hieter, P., D. Pridmore, J. H. Hegemann, M. Thomas, R. W. Davis, and P. Philippsen. 1985. Functional selection and analysis of yeast centromeric DNA. Cell 42:913–921.
  • Ikeno, M., H. Masumoto, and T. Okazaki. 1994. Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range a-satellite DNA arrays of human chromosome 21. Hum. Mol. Genet. 3:1245–1257.
  • Jiang, W., J. Lechner, and J. Carbon. 1993. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J. Cell Biol. 121:513–519.
  • Jiang, W., H. Middleton, H. Yoon, C. Fouquet, and J. Carbon. 1993. An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol. Cell. Biol. 13:4884–4893.
  • Jorgensen, A. L., C. J. Bostock, and A. L. Bak. 1986. Chromosome-specific subfamilies within human alphoid repetitive DNA. J. Mol. Biol. 187:185–196.
  • Jorgensen, A. L., C. J. Bostock, and A. L. Bak. 1987. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. Proc. Natl. Acad. Sci. USA 84:1075–1079.
  • Kipling, D., A. R. Mitchell, H. Masumoto, H. E. Wilson, L. Nicol, and H. J. Cooke. 1995. CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli. Mol. Cell. Biol. 15:4009–4020.
  • Kitagawa, K., H. Masumoto, M. Ikeda, and T. Okazaki. 1995. Analysis of protein-DNA and protein-protein interactions of centromere protein B (CENP-B) and properties of the DNA-CENP-B complex in the cell cycle. Mol. Cell. Biol. 15:1602–1612.
  • Lechner, J., and J. Carbon. 1991. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–725.
  • Masumoto, H. Unpublished data.
  • Masumoto, H., H. Masukata, Y. Muro, N. Nozaki, and T. Okazaki. 1989. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J. Cell Biol. 109:1963–1973.
  • Masumoto, H., K. Sugimoto, and T. Okazaki. 1989. Alphoid satellite DNA is tightly associated with centromere antigens in human chromosomes throughout the cell cycle. Exp. Cell Res. 181:181–196.
  • Masumoto, H., K. Yoda, M. Ikeno, K. Kitagawa, Y. Muro, and T. Okazaki. 1993. Properties of CENP-B and its target sequence in a satellite DNA, p. 31–43. In B. K. Vig (ed.), Chromosome segregation and aneuploidy. NATO ASI series, vol. H72. Springer-Verlag, Berlin.
  • Morishita, S., K. Yoda, and T. Okazaki. Unpublished data.
  • Moroi, Y., A. L. Hartman, P. K. Nakane, and E. M. Tan. 1981. Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. J. Cell Biol. 90:254–259.
  • Moroi, Y., C. Peebles, M. J. Fritzler, J. Steigerwald, and E. M. Tan. 1980. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc. Natl. Acad. Sci. USA 77:1627–1631.
  • Muro, Y., H. Masumoto, K. Yoda, N. Nozaki, M. Ohashi, and T. Okazaki. 1992. Centromere protein B assembles human centromeric a-satellite DNA at the 17 bp sequence, CENP-B box. J. Cell Biol. 116:585–596.
  • Murphy, T. D., and G. H. Karpen. 1995. Localization of centromere function in a Drosophila minichromosome. Cell 82:599–609.
  • Pietras, D. F., K. L. Bennett, L. D. Siracusa, M. Woodworth-Gutai, V. M. Chapman, K. W. Gross, C. Kane-Haas, and N. D. Hastie. 1983. Construction of a small Mus musculus repetitive DNA library: identification of a new satellite sequence in Mus musculus. Nucleic Acids Res. 11:6965–6983.
  • Pluta, A. F., C. A. Cooke, and W. C. Earnshaw. 1990. Structure of the human centromere at metaphase. Trends Biochem. Sci. 15:181–185.
  • Pluta, A. F., N. Saitoh, I. Goldberg, and W. C. Earnshaw. 1992. Identification of a subdomain of CENP-B that is necessary and sufficient for localization to the human centromere. J. Cell Biol. 116:1081–1093.
  • Rattner, J. R. 1987. The organization of the mammalian kinetochore: a scanning electron microscope study. Chromosoma 95:175–181.
  • Ris, H., and P. L. Witt. 1981. Structure of the mammalian kinetochore. Chromosoma 82:153–170.
  • Rosenberg, H., M. Singer, and M. Rosenberg. 1978. Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN. Science 200:394–402.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Sullivan, K. F., and C. A. Glass. 1991. CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins. Chromosoma 100:360–370.
  • Suzuki, N., and H. Masumoto. Unpublished data.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Trowell, H. E., A. Nagy, B. Vissel, and K. H. A. Choo. 1993. Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet. 2:1639–1649.
  • Vissel, B., and K. H. Choo. 1991. Four distinct alpha satellite subfamilies shared by human chromosomes 13, 14 and 21. Nucleic Acids Res. 19:271–277.
  • Wafik, S. E. 1992. Definition of a consensus binding site for p53. Nat. Genet. 1:45–49.
  • Waye, J. S., and H. F. Willard. 1985. Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. Nucleic Acids Res. 13:2731–2743.
  • Waye, J. S., and H. F. Willard. 1986. Structure, organization, and sequence of alpha satellite DNA from human chromosome 17: evidence for evolution by unequal crossing-over and an ancestral pentamer repeat shared with the human X chromosome. Mol. Cell. Biol. 6:3156–3165.
  • Waye, J. S., and H. F. Willard. 1987. Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes. Nucleic Acids Res. 15:7550–7569.
  • Willard, H. F. 1990. Centromeres of mammalian chromosomes. Trends Genet. 6:410–416.
  • Willard, H. F., and J. S. Waye. 1987. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet. 3:192–198.
  • Wong, A. K. C., F. G. Biddle, and J. B. Rattner. 1990. The chromosomal distribution of the major and minor satellite is not conserved in the genus Mus. Chromosoma 99:190–195.
  • Wong, A. K. C., and J. B. Rattner. 1988. Sequence organization and cyto-logical localization of the minor satellite of mouse. Nucleic Acids Res. 16:11645–11661.
  • Wu, J. C., and L. Manuelidis. 1980. Sequence definition and organization of a human repeated DNA. J. Mol. Biol. 142:363–386.
  • Yoda, K., K. Kitagawa, H. Masumoto, Y. Muro, and T. Okazaki. 1992. A human centromere protein, CENP-B, has a DNA binding domain containing four potential a-helices at the NH2 terminus, which is separable from dimer-izing activity. J. Cell Biol. 119:1413–1427.
  • Yoda, K., and T. Okazaki. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.