38
Views
218
CrossRef citations to date
0
Altmetric
Research Article

Dual Mechanisms for the Inhibition of E2F Binding to RB by Cyclin-Dependent Kinase-Mediated RB Phosphorylation

&
Pages 5771-5783 | Received 10 Apr 1997, Accepted 14 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Bremner, R., B. L. Cohen, M. Sopta, P. A. Hamel, C. J. Ingles, B. L. Gallie, and R. A. Phillips. 1995. Direct transcriptional repression by pRB and its reversal by specific cyclins. Mol. Cell. Biol. 15:3256–3265.
  • Buchkovich, K., L. A. Duffy, and E. Harlow. 1989. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105.
  • Chang, M. W., E. Barr, J. Seltzer, Y. Q. Jiang, G. J. Nabel, E. G. Nabel, M. S. Parmacek, and J. M. Leiden. 1995. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 267:518–522.
  • Chellappan, S., V. B. Kraus, B. Kroger, K. Munger, P. M. Howley, W. C. Phelps, and J. R. Nevins. 1992. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl. Acad. Sci. USA 89:4549–4553.
  • Chow, K. N., P. Starostik, and D. C. Dean. 1996. The Rb family contains a conserved cyclin-dependent-kinase-regulated transcriptional repressor motif. Mol. Cell. Biol. 16:7173–7181.
  • Connell-Crowley, L., J. W. Harper, and D. W. Goodrich. 1997. Cyclin D1/ Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by sitespecific phosphorylation. Mol. Biol. Cell 8:287–301.
  • DeGregori, J., T. Kowalik, and J. R. Nevins. 1995. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 15:4215–4224.
  • Fattaey, A. R., E. Harlow, and K. Helin. 1993. Independent regions of adenovirus E1A are required for binding to and dissociation of E2F-protein complexes. Mol. Cell. Biol. 13:7267–7277.
  • Flemington, E. K., S. H. Speck, and W. G. Kaelin, Jr. 1993. E2F-1-mediated transactivation is inhibited by complex formation with the retinoblastoma susceptibility gene product. Proc. Natl. Acad. Sci. USA 90:6914–6918.
  • Goodrich, D. W., N. P. Wang, Y. W. Qian, E. Y. Lee, and W. H. Lee. 1991. The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67:293–302.
  • Goodrich, D. W., and W. H. Lee. 1992. Abrogation by c-myc of G1 phase arrest induced by RB protein but not by p53. Nature 360:177–179.
  • Hamel, P. A., B. L. Cohen, L. M. Sorce, B. L. Gallie, and R. A. Phillips. 1990. Hyperphosphorylation of the retinoblastoma gene product is determined by domains outside the simian virus 40 large-T-antigen-binding regions. Mol. Cell. Biol. 10:6586–6595.
  • Hamel, P. A., R. M. Gill, R. A. Phillips, and B. L. Gallie. 1992. Regions controlling hyperphosphorylation and conformation of the retinoblastoma gene product are independent of domains required for transcriptional repression. Oncogene 7:693–701.
  • Hamel, P. A., R. M. Gill, R. A. Phillips, and B. L. Gallie. 1992. Transcriptional repression of the E2-containing promoters EIIaE, c-myc, and RB1 by the product of the RB1 gene. Mol. Cell. Biol. 12:3431–3438.
  • Hamel, P. A., R. A. Phillips, M. Muncaster, and B. L. Gallie. 1993. Speculations on the roles of RB1 in tissue-specific differentiation, tumor initiation, and tumor progression. FASEB J. 7:846–854.
  • Hensey, C. E., F. T. Hong, T. Durfee, Y. W. Qian, E. Y. Lee, and W. H. Lee. 1996. Identification of discrete structural domains in the retinoblastoma protein. Amino-terminal domain is required for its oligomerization. J. Biol. Chem. 269:1380–1387.
  • Herrera, R. E., T. P. Mäkelä, and R. A. Weinberg. 1996. TGF beta-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol. Biol. Cell 7:1335–1342.
  • Herrera, R. E., V. P. Sah, B. O. Williams, T. P. Mäkelä, R. A. Weinberg, and T. Jacks. 1996. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol. Cell. Biol. 16:2402–2407.
  • Hiebert, S. W. 1993. Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Mol. Cell. Biol. 13:3384–3391.
  • Hinds, P. W., S. Mittnacht, V. Dulic, A. Arnold, S. I. Reed, and R. A. Weinberg. 1992. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70:993–1006.
  • Hu, Q. J., N. Dyson, and E. Harlow. 1990. The regions of the retinoblastoma protein needed for binding to adenovirus E1A or SV40 large T antigen are common sites for mutations. EMBO J. 9:1147–1155.
  • Huang, P. S., D. R. Patrick, G. Edwards, P. J. Goodhart, H. E. Huber, L. Miles, V. M. Garsky, A. Oliff, and D. C. Heimbrook. 1993. Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein. Mol. Cell. Biol. 13:953–960.
  • Huang, S., N. P. Wang, B. Y. Tseng, W. H. Lee, and E. H. Lee. 1990. Two distinct and frequently mutated regions of retinoblastoma protein are required for binding to SV40 T antigen. EMBO J. 9:1815–1822.
  • Ikeda, M. A., and J. R. Nevins. 1993. Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol. Cell. Biol. 13:7029–7035.
  • Johnson, D. G., J. K. Schwarz, W. D. Cress, and J. R. Nevins. 1993. Expression of transcription factor E2F1 induces quiescent cells to enter S-phase. Nature 365:349–352.
  • Kaelin, W. G., Jr., M. E. Ewen, and D. M. Livingston. 1990. Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. Mol. Cell. Biol. 10:3761–3769.
  • Kitagawa, M., H. Higashi, H. K. Jung, I. Suzuki-Takahashi, M. Ikeda, K. Tamai, J. Kato, K. Segawa, E. Yoshida, and S. Nishimura. 1996. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J. 15:7060–7069.
  • Knudsen, E. S., and J. Y. Wang. 1996. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J. Biol. Chem. 271:8313–8320.
  • Koh, J., G. H. Enders, B. D. Dynlacht, and E. Harlow. 1995. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375:506–510.
  • Lam, E. W., and R. J. Watson. 1993. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J. 12:2705–2713.
  • Lees, J. A., K. J. Buchkovich, D. R. Marshak, C. W. Anderson, and E. Harlow. 1991. The retinoblastoma protein is phosphorylated on multiple sites by human cdc2. EMBO J. 10:4279–4290.
  • Lin, B. T., S. Gruenwald, A. O. Morla, W. H. Lee, and J. Y. Wang. 1991. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J. 10:857–864.
  • Lin, B. T., and J. Y. Wang. 1992. Cell cycle regulation of retinoblastoma protein phosphorylation. Ciba Found. Symp. 170:227–241.
  • Ludlow, J. W., C. L. Glendening, D. M. Livingston, and J. A. DeCarprio. 1993. Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol. Cell. Biol. 13:367–372.
  • Lukas, J., D. Parry, L. Aagaard, D. J. Mann, J. Bartkova, M. Strauss, G. Peters, and J. Bartek. 1995. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375:503–506.
  • Medema, R. H., R. E. Herrera, F. Lam, and R. A. Weinberg. 1995. Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc. Natl. Acad. Sci. USA 92:6289–6293.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.
  • Qian, Y., C. Luckey, L. Horton, M. Esser, and D. J. Templeton. 1992. Biological function of the retinoblastoma protein requires distinct domains for hyperphosphorylation and transcription factor binding. Mol. Cell. Biol. 12:5363–5372.
  • Qin, X. Q., T. Chittenden, D. M. Livingston, and W. G. Kaelin, Jr. 1992. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6:953–964.
  • Qin, X. Q., D. M. Livingston, M. Ewen, W. R. Sellers, Z. Arany, and W. G. Kaelin, Jr. 1995. The transcription factor E2F-1 is a downstream target of RB action. Mol. Cell. Biol. 15:742–755.
  • Sellers, W. R., J. W. Rodgers, and W. G. Kaelin, Jr. 1995. A potent transrepression domain in the retinoblastoma protein induces a cell cycle arrest when bound to E2F sites. Proc. Natl. Acad. Sci. USA 92:11544–11548.
  • Sherr, C. J. 1996. Cancer cell cycles. Science 274:1672–1677.
  • Slansky, J. E., and P. J. Farnham. 1996. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol. Immunol. 208:1–30.
  • Templeton, D. J., S. H. Park, L. Lanier, and R. A. Weinberg. 1991. Non-functional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. Natl. Acad. Sci. USA 88:3033–3037.
  • Vairo, G., D. M. Livingston, and D. Ginsberg. 1995. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 9:869–881.
  • Wang, J. Y. 1997. Retinoblastoma protein in growth suppression and death protection. Curr. Opin. Genet. Dev. 7:39–45.
  • Wang, J. Y., E. S. Knudsen, and P. J. Welch. 1994. The retinoblastoma tumor suppressor protein. Adv. Cancer Res. 64:25–85.
  • Weinberg, R. A. 1994. The retinoblastoma protein and cell cycle control. Cell 81:323–330.
  • Weintraub, S. J., C. A. Prater, and D. C. Dean. 1992. Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358:259–261.
  • Welch, P. J., and J. Y. Wang. 1993. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75:779–790.
  • Welch, P. J., and J. Y. Wang. 1995. Disruption of retinoblastoma protein function by coexpression of its C pocket fragment. Genes Dev. 9:31–46.
  • Welch, P. J., and J. Y. Wang. 1995. Abrogation of retinoblastoma protein function by c-Abl through tyrosine kinase-dependent and -independent mechanisms. Mol. Cell. Biol. 15:5542–5551.
  • Whitaker, L. L., H. Su, and J. Y. J. Wang. Unpublished data.
  • Xiao, Z. X., J. Chen, A. J. Levine, N. Modjtahedi, J. Xing, W. R. Sellers, and D. M. Livingston. 1995. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375:694–698.
  • Zarkowska, T., and S. Mittnacht. 1997. Differential phosphorylation of the retinoblastoma protein by G(1)/S cyclin-dependent kinases. J. Biol. Chem. 272:12738–12746.
  • Zhu, L., S. van den Heuvel, K. Helin, A. Fattaey, M. Ewen, D. Livingston, N. Dyson, and E. Harlow. 1993. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7:1111–1125.
  • Zwicker, J., F. C. Lucibello, L. A. Wolfraim, C. Gross, M. Truss, K. Engeland, and R. Müller. 1995. Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J. 14:4514–4522.
  • Zwicker, J., N. Liu, K. Engeland, F. C. Lucibello, and R. Müller. 1996. Cell cycle regulation of E2F site occupation in vivo. Science 271:1595–1597.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.