0
Views
69
CrossRef citations to date
0
Altmetric
Research Article

Alleviation of Histone H1-Mediated Transcriptional Repression and Chromatin Compaction by the Acidic Activation Region in Chromosomal Protein HMG-14

, &
Pages 5843-5855 | Received 16 Apr 1997, Accepted 11 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Albright, S. C., J. M. Wiseman, R. A. Lange, and W. T. Garrard. 1980. Subunit structures of different electrophoretic forms of nucleosomes. J. Biol. Chem. 255:3673–3684.
  • Alfonso, P. J., M. P. Crippa, J. J. Hayes, and M. Bustin. 1994. The footprint of chromosomal proteins HMG-14 and HMG-17 on chromatin subunits. J. Mol. Biol. 236:189–198.
  • Allan, J., P. G. Hartman, C. Crane-Robinson, and F. X. Aviles. 1980. The structure of histone H1 and its location in chromatin. Nature 288:675–679.
  • Allan, J., G. J. Cowling, N. Harborne, P. Cattini, R. Craigie, and H. Gould. 1981. Regulation of the higher-order structure of chromatin by histones H1 and H5. J. Cell Biol. 90:279–288.
  • Ambrose, C., H. Lowman, A. Rajadhyaksha, V. Blasquez, and M. Bina. 1990. Location of nucleosomes in simian virus 40 chromatin. J. Mol. Biol. 214:875–884.
  • Barratt, M. J., C. A. Hazzalin, N. Zhelev, and L. C. Mahadevan. 1994. A mitogen- and anisomycin-stimulated kinase phosphorylates HMG-14 in its basic amino-terminal domain in vivo and on isolated mononucleosomes. EMBO J. 13:4524–4535.
  • Batson, S. C., R. Sundseth, C. V. Heath, M. Samuels, and U. Hansen. 1992. In vitro initiation of transcription by RNA polymerase II on in vivo-assembled chromatin templates. Mol. Cell. Biol. 12:1639–1651.
  • Batson, S. C., S. Rimsky, R. Sundseth, and U. Hansen. 1993. Association of nucleosome-free regions and basal transcription factors with in vivo-assembled chromatin templates active in vitro. Nucleic Acids Res. 21:3459–3468.
  • Belikov, S. V., A. I. Belgovsky, O. V. Preobrazhenskaya, V. L. Karpov, and A. D. Mirzabekov. 1993. Two non-histone proteins are associated with the promoter region and histone H1 with the transcribed region of active hsp-70 genes as revealed by UV-induced DNA-protein crosslinking in vivo. Nucl. Acids Res. 21:1031–1034.
  • Bertrand-Mercat, P., and J. R. Pasqualini. 1991. Antagonistic effect of the antiestrogen 4-hydroxytamoxifen on estradiol-stimulated acetylation of nuclear high mobility group (HMG) proteins in the uterus of newborn guineapigs. Life Sci. 48:2081–2087.
  • Bustin, M., D. A. Lehn, and D. Landsman. 1990. Structural features of the HMG chromosomal proteins and their genes. Biochim. Biophys. Acta 1049:231–243.
  • Bustin, M., P. S. Becerra, M. P. Crippa, D. A. Lehn, J. M. Pash, and J. Shiloach. 1991. Recombinant human chromosomal proteins HMG-14 and HMG-17. Nucleic Acids Res. 19:3115–3121.
  • Bustin, M., L. Trieschmann, and Y. V. Postnikov. 1995. The HMG-14/-17 chromosomal protein family: architectural elements that enhance transcription from chromatin templates. Semin. Cell Biol. 6:247–255.
  • Clark, D. J., and T. Kimura. 1990. Electrostatic mechanism of chromatin folding. J. Mol. Biol. 211:883–896.
  • Côté, J., J. Quinn, J. L. Workman, and C. L. Peterson. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60.
  • Crippa, M. P., P. J. Alfonso, and M. Bustin. 1992. Nucleosome core binding region of chromosomal protein HMG-17 acts as an independent functional domain. J. Mol. Biol. 228:442–449.
  • Crippa, M. P., L. Trieschmann, P. J. Alfonso, A. P. Wolffe, and M. Bustin. 1993. Deposition of chromosomal protein HMG-17 during replication affects the nucleosomal ladder and transcriptional potential of nascent chromatin. EMBO J. 12:3855–3864.
  • Croston, G. E., L. A. Kerrigan, L. M. Lira, D. R. Marshak, and J. T. Kadonaga. 1991. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251:643–649.
  • Ding, H.-F., and U. Hansen. Unpublished data.
  • Ding, H.-F., S. Rimsky, S. C. Batson, M. Bustin, and U. Hansen. 1994. Stimulation of RNA polymerase II elongation by chromosomal protein HMG-14. Science 265:796–799.
  • Ding, H.-F., L. Trieschmann, Y. V. Postnikov, A. Rickers, M. Bustin, and U. Hansen. Unpublished data.
  • Ericsson, C., U. Grossbach, B. Bjorkroth, and B. Daneholt. 1990. Presence of histone H1 on an active Balbiani ring gene. Cell 60:73–83.
  • Feng, J., and B. Villeponteau. 1990. Serum stimulation of the c-fos enhancer induces reversible changes in c-fos chromatin structure. Mol. Cell. Biol. 10:1126–1133.
  • Garrard, W. T. 1991. Histone H1 and the conformation of transcriptionally active chromatin. Bioessays 13:87–88.
  • Giri, C., D. Landsman, N. Soares, and M. Bustin. 1987. Modulation of the cellular ratio of chromosomal high mobility group proteins 14 to 17 in transfected cells. J. Biol. Chem. 262:9839–9843.
  • Goldman, M. A., G. P. Holmquist, M. C. Gray, L. A. Caston, and A. Nag. 1984. Replication timing of genes and middle repetitive sequences. Science 224:686–692.
  • Goodwin, G. H., and C. G. P. Mathew. 1982. Role in gene structure and function, p. 193–221. In E. W. Johns (ed.), The HMG chromosomal proteins. Academic Press Inc., New York, N.Y.
  • Graziano, V., and V. Ramakrishnan. 1990. Interaction of HMG14 with chromatin. J. Mol. Biol. 214:897–910.
  • Hansen, J. C., and A. P. Wolffe. 1992. Influence of chromatin folding on transcription initiation and elongation by RNA polymerase III. Biochemistry 31:7977–7988.
  • Hatton, K. S., V. Dhar, E. H. Brown, M. A. Iqbal, S. Stuart, V. T. Didamo, and C. L. Schildkraut. 1988. Replication program of active and inactive multigene families in mammalian cells. Mol. Cell. Biol. 8:2149–2158.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and R. E. Kingston. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Izban, M. G., and D. S. Luse. 1992. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267:13647–13655.
  • Kamakaka, R. T., and J. O. Thomas. 1990. Chromatin structure of transcriptionally competent and repressed genes. EMBO J. 9:3997–4006.
  • Kamakaka, R. T., M. Bulger, and J. T. Kadonaga. 1993. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev. 7:1779–1795.
  • Kimura, T., F. C. Mills, J. Allan, and H. Gould. 1983. Selective unfolding of erythroid chromatin in the region of the active þ-globin gene. Nature 306:709–712.
  • Kornberg, R. D., and Y. Lorch. 1992. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8:563–587.
  • Kwon, H., A. N. Imbalzano, P. A. Khavarl, R. E. Kingston, and M. R. Green. 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–481.
  • Landsman, D., and M. Bustin. 1991. Assessment of the transcriptional activation potential of the HMG chromosomal proteins. Mol. Cell. Biol. 11:4483–4489.
  • Leuba, S. H., J. Zlatanova, and K. van Holde. 1993. On the location of histones H1 and H5 in the chromatin fiber. Studies with immobilized trypsin and chymotrypsin. J. Mol. Biol. 229:917–929.
  • Lu, Q., L. L. Wallrath, and S. C. R. Elgin. 1994. Nucleosome positioning and gene regulation. J. Cell. Biochem. 55:83–92.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Majumdar, A., D. Brown, S. Kerby, I. Rudzinski, T. Polte, Z. Randhawa, and M. M. Seidman. 1991. Sequence of human HMG2 cDNA. Nucleic Acids Res. 19:6643.
  • Mardian, J. K. W., A. E. Paton, G. J. Bunick, and D. E. Olins. 1980. Nucleosome cores have two specific binding sites for nonhistone chromosomal proteins HMG 14 and HMG 17. Science 209:1534–1536.
  • Nacheva, G. A., D. Y. Guschin, O. V. Preobrazhenskaya, V. L. Karpov, K. K. Ebralidse, and A. D. Mirzabekov. 1989. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell 58:27–36.
  • Nelson, P. P., S. C. Albright, J. M. Wiseman, and W. T. Garrard. 1979. Reassociation of histone H1 with nucleosomes. J. Biol. Chem. 254:11751–11760.
  • O’Neill, T. E., G. Meersseman, S. Pennings, and E. M. Bradbury. 1995. Deposition of histone H1 onto reconstituted nucleosome arrays inhibits both initiation and elongation of transcripts by T7 RNA polymerase. Nucleic Acids Res. 23:1075–1082.
  • Paranjape, S. M., R. T. Kamakaka, and J. T. Kadonaga. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Paranjape, S. M., A. Krumm, and J. T. Kadonaga. 1995. HMG17 is a chromatin-specific transcriptional coactivator that increases the efficiency of transcription initiation. Genes Dev. 9:1978–1991.
  • Pasqualini, J. R., R. Sterner, P. Mercat, and V. G. Allfrey. 1989. Estradiol enhanced acetylation of nuclear high mobility group proteins of the uterus of newborn guinea pigs. Biochem. Biophys. Res. Commun. 161:1260–1266.
  • Pederson, D. S., F. Thoma, and R. T. Simpson. 1986. Core particle, fiber, and transcriptionally active chromatin structure. Annu. Rev. Cell Biol. 2:117–147.
  • Peterson, C. L., and J. W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem. Sci. 20:143–146.
  • Postnikov, Y. V., L. Trieschmann, A. Rickers, and M. Bustin. 1995. Homodimers of chromosomal proteins HMG-14 and HMG-17 in nucleosome cores. J. Mol. Biol. 252:423–432.
  • Pruss, D., B. Bartholomew, J. Persinger, J. Hayes, G. Arents, E. N. Moudrianakis, and A. P. Wolffe. 1996. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science 274:614–617.
  • Renz, M., P. Nehls, and J. Hozier. 1977. Involvement of histone H1 in the organization of the chromosome fiber. Proc. Natl. Acad. Sci. USA 74:1879–1883.
  • Sandeen, G., W. I. Wood, and G. Felsenfeld. 1980. The interaction of high mobility proteins HMG14 and 17 with nucleosomes. Nucleic Acids Res. 8:3757–3778.
  • Shykind, B. M., J. Kim, and P. A. Sharp. 1995. Activation of the TFIID-TFIIA complex with HMG-2. Genes Dev. 9:1354–1365.
  • Simpson, R. T. 1978. Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17:5524–5531.
  • Spaulding, S. W., N. W. Fucile, D. P. Bofinger, and L. G. Sheflin. 1991. Cyclic adenosine 3′,5′-monophosphate-dependent phosphorylation of HMG 14 inhibits its interactions with nucleosomes. Mol. Endocrinol. 5:42–50.
  • Stalder, J., M. Groudine, J. B. Dodgson, J. D. Engel, and H. Weintraub. 1980. Hb switching in chickens. Cell 19:973–980.
  • Staynov, D. Z., and C. Crane-Robinson. 1988. Footprinting of linker histones H5 and H1 on the nucleosome. EMBO J. 7:3685–3691.
  • Thoma, F., T. Koller, and A. Klug. 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J. Cell Biol. 83:403–427.
  • Thomas, J. O. 1984. The higher order structure of chromatin and histone H1. J. Cell Sci. Suppl. 1:1–20.
  • Trieschmann, L., P. J. Alfonso, M. P. Crippa, A. P. Wolffe, and M. Bustin. 1995. Incorporation of chromosomal proteins HMG-14/-17 into nascent nucleosomes induces an extended chromatin conformation and enhances the utilization of active transcription complexes. EMBO J. 14:1478–1489.
  • Trieschmann, L., Y. V. Postnikov, A. Rickers, and M. Bustin. 1995. Modular structure of chromosomal proteins HMG-14/-17: definition of a transcriptional enhancement domain distinct from the nucleosomal binding domain. Mol. Cell. Biol. 15:6663–6669.
  • Tsukiyama, T., and C. Wu. 1995. Purification and properties of an ATP- dependent nucleosome remodeling factor. Cell 83:1011–1020.
  • Uberbacher, E. C., J. K. W. Mardian, R. M. Rossi, D. E. Olins, and G. J. Bunick. 1982. Neutron scattering studies and modeling of high mobility group 14 core nucleosome complex. Proc. Natl. Acad. Sci. USA 79:5258–5262.
  • van Holde, K. E. 1989. Chromatin. Springer-Verlag New York Inc., New York, N.Y.
  • Vilarreal, L. P. 1991. Relationship of eukaryotic DNA replication to committed gene expression: general theory for gene control. Microbiol. Rev. 55:512–542.
  • Weintraub, H. 1984. Histone-H1-dependent chromatin superstructures and the suppression of gene activity. Cell 38:17–27.
  • Weintraub, H., and M. Groudine. 1976. Chromosomal subunits in active genes have an altered conformation. Science 193:848–856.
  • Winston, F., and M. Carlson. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:387–391.
  • Wolffe, A. 1995. Chromatin: structure and function, 2nd ed. Academic Press Inc., London, United Kingdom.
  • Wolffe, A. P. 1994. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem. Sci. 19:240–244.
  • Workman, J. L., and A. R. Buchman. 1993. Multiple functions of nucleosomes and regulatory factors in transcription. Trends Biochem. Sci. 18:90–95.
  • Zlatanova, J. 1990. Histone H1 and the regulation of transcription of eukaryotic genes. Trends Biochem. Sci. 15:273–276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.