14
Views
117
CrossRef citations to date
0
Altmetric
Research Article

The CDK7-cycH-p36 Complex of Transcription Factor IIH Phosphorylates p53, Enhancing Its Sequence-Specific DNA Binding Activity In Vitro

, , &
Pages 5923-5934 | Received 21 Apr 1997, Accepted 10 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Aboussekhra, A., M. Biggerstaff, M. K. Shivji, J. A. Vilpo, V. Moncollin, V. N. Podust, M. Protic, U. Hubscher, J. M. Egly, and R. D. Wood. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868.
  • Barlow, C., S. Hiotsune, R. Paylor, M. Liyanage, M. Eckhaus, F. Collins, Y. Shiloh, J. N. Crawley, T. Ried, D. Tagle, and A. Wynshaw-Boris. 1996. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86:159–171.
  • Baudier, J., C. Delphin, D. Grunwald, S. Khochbin, and J. J. Lawrence. 1992. Characterization of the tumor suppressor protein p53 as a protein kinase C substrate and a S100b-binding protein. Proc. Natl. Acad. Sci. USA 89:11627–11631.
  • Bayle, J. H., B. Elenbaas, and A. J. Levine. 1995. The carboxy-terminal domain of the p53 protein regulates sequence specific DNA binding through its nonspecific nucleic acid binding activity. Proc. Natl. Acad. Sci. USA 92:5729–5733.
  • Bischoff, J. R., P. N. Friedman, D. R. Marshak, C. Prives, and D. Beach. 1990. Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc. Natl. Acad. Sci. USA 87:4766–4770.
  • Bogue, M. A., C. Zhu, E. Aguilar-Cordova, L. A. Donehower, and D. B. Roth. 1996. p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes. Genes Dev. 10:553–565.
  • Buckbinder, L., R. Talbott, S. Valesco-Miguel, I. Takenaka, B. Faha, B. R. Seizinger, and N. Kley. 1995. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377:646–649.
  • Chen, J., V. Marechal, and A. J. Levine. 1993. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13:4107–4114.
  • Chen, J., X. Wu, J. Lin, and A. J. Levine. 1996. mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol. Cell. Biol. 16:2445–2452.
  • Cho, Y., S. Gorina, P. D. Jeffrey, and N. P. Pavletich. 1994. Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Drapkin, R., J. T. Reardon, A. Ansari, J. G. Huang, L. Zawel, K. Olin, A. Sancar, and D. Reinberg. 1994. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature 368:769–772.
  • Drapkin, R., A. Sancar, and D. Reinberg. 1994. Where transcription meets repair. Cell 77:9–12.
  • Dulic, V., W. K. Kaufmann, S. J. Lees, T. D. Tisty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Feaver, W. J., J. Q. Svejstrup, L. Bardwell, A. J. Bardwell, S. Buratowski, K. D. Gulyas, T. F. Donahue, E. C. Friedberg, and R. D. Kornberg. 1993. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75:1379–1387.
  • Fields, S., and S. K. Jang. 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049.
  • Fiscella, M., S. J. Ullrich, N. Zambrano, M. T. Shields, D. Lin, S. P. Lees-Miller, C. W. Anderson, W. E. Mercer, and E. Appella. 1993. Mutation of the serine 15 phosphorylation site of human p53 reduces the ability of p53 to inhibit cell cycle progression. Oncogene 8:1519–1528.
  • Fisher, F., M. Gerard, C. Chalut, Y. Lutz, S. Humbert, M. Kanno, P. Chambon, and J. M. Egly. 1992. Cloning of the 62-kilodalton component of basic transcription factor BTF2. Science 257:1392–1395.
  • Fisher, R. P., P. Jin, H. M. Chamberlin, and D. O. Morgan. 1995. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83:47–57.
  • Fisher, R. P., and D. O. Morgan. 1994. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78:713–724.
  • Flores, O., H. Lu, and D. Reinberg. 1992. Factors involved in specific transcription by mammalian RNA polymerase II: identification and characterization of factor IIH. J. Biol. Chem. 267:2786–2793.
  • Fresquet, D., J. C. Labbé, J. Derancourt, J. P. Capony, S. Galas, S. Girard, T. Lorca, J. Shuttleworth, M. Doree, and J. C. Cavadore. 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12:3111–3121.
  • Gottlieb, T. M., and M. Oren. 1996. p53 in growth control and neoplasia. Biochim. Biophys. Acta Gene Struct. Expr. 1287:77–102.
  • Graeber, A. J., C. Osmanian, T. Jack, D. E. Housman, C. J. Koch, S. W. Lowe, and A. J. Graccia. 1996. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379:88–91.
  • Guidos, C. J., C. J. Williams, I. Grandal, G. Knowles, M. T. F. Huang, and J. S. Danska. 1996. V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev. 10:2038–2054.
  • Gurley, K. E., and C. J. Kemp. 1996. p53 induction, cell cycle checkpoints, and apoptosis in DNAPK-deficient scid mice. Carcinogenesis 17:2537–2542.
  • Harlow, E., L. V. Crawford, D. C. Pim, and N. M. Williamson. 1981. Monoclonal antibodies specific for simian virus 40 tumor antigen. J. Virol. 39:861–869.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hupp, T., D. Meek, C. A. Midgley, and D. Lane. 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886.
  • Hupp, T. R., and D. P. Lane. 1994. Allosteric activation of latent p53 tetramers. Curr. Biol. 4:865–875.
  • Hupp, T. R., A. Sparks, and D. P. Lane. 1995. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83:237–245.
  • Jamal, S., and E. B. Ziff. 1995. Raf phosphorylates p53 in vitro and potentiates p53-dependent transcriptional transactivation in vivo. Oncogene 10:2095–2101.
  • Jayaraman, L., and C. Prives. 1995. Activation of p53 sequence-specific DNA binding by short single strands of DNA requires the p53 C-terminus. Cell 81:1021–1029.
  • Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311.
  • Kastan, M. B., Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace, Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxiatelangiectasia. Cell 71:587–597.
  • Ko, J. L., and C. Prives. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Labbé, J. C., A. M. Martinez, D. Fesquet, J. P. Capony, J. M. Darbon, J. Derancourt, A. Devault, N. Morin, J. C. Cavadore, and M. Doree. 1994. p40MO15 associates with a p36 subunit and requires both nuclear translocation and Thr176 phosphorylation to generate cdk-activating kinase activity in Xenopus oocytes. EMBO J. 13:5155–5164.
  • Lee, S., B. Elenbaas, A. J. Levine, and J. Griffith. 1995. p53 and its 14kDa C-terminal domain recognize primary DNA damage in the form of insertion/ deletion mismatches. Cell 81:1013–1020.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Levine, A. J., A. Chang, D. Dittmer, D. A. Notterman, A. Silver, K. Thorn, D. Welsh, and M. Wu. 1994. The p53 tumor suppressor gene. J. Lab. Clin. Med. 124:817–823.
  • Lin, J., J. Chen, B. Elenbass, and A. J. Levine. 1994. Several hydrophobic amino acids in the p53 N-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55kd protein. Genes Dev. 8:1235–1246.
  • Linke, S. P., K. C. Clarkin, A. DiLeonardo, A. Tsou, and G. M. Wahl. 1996. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 10:934–947.
  • Ljungman, M., and F. Zhang. 1996. Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13:823–831.
  • Lu, H., O. Flores, R. Weinmann, and D. Reinberg. 1991. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 88:10004–10008.
  • Lu, H., and A. J. Levine. 1995. Human TAF-31 is a transcriptional coactivator of the p53 protein. Proc. Natl. Acad. Sci. USA 92:5154–5158.
  • Lu, H., and A. J. Levine. Unpublished data.
  • Lu, H., L. Zawel, L. Fisher, J. M. Egly, and D. Reinberg. 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358:641–645.
  • Meek, D. W., and W. Eckhart. 1988. Phosphorylation of p53 in normal and simian virus 40-transformed NIH 3T3 cells. Mol. Cell. Biol. 8:461–465.
  • Milne, D. M., D. G. Campbell, F. B. Caudwell, and D. W. Meek. 1994. Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J. Biol. Chem. 269:9253–9260.
  • Milne, D. M., L. E. Campbell, D. G. Campbell, and D. W. Meek. 1995. p53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK-1. J. Biol. Chem. 270:5511–5518.
  • Milne, D. M., L. McKendrick, L. J. Jardine, E. Deacon, J. M. Lord, and D. W. Meek. 1996. Murine p53 is phosphorylated within the PAB-421 epitope by protein kinase C in vitro, but not in vivo, even after stimulation with the phorbol ester O-tetradecanoylphorbol 13-acetate. Oncogene 13:205–211.
  • Milne, D. M., R. H. Palmer, D. G. Campbell, and D. W. Meek. 1992. Phosphorylation of the p53 tumour-suppressor protein at three N-terminal sites by a novel casein kinase I-like enzyme. Oncogene 7:1361–1369.
  • Miyashita, T., and J. C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299.
  • Momand, J., G. P. Zambetti, D. C. Olson, D. George, and A. J. Levine. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. Cell 69:1237–1245.
  • Mummenbrauer, T., F. Janus, B. Muller, L. Wiesmuller, W. Deppert, and F. Grosse. 1996. p53 protein exhibits 3′-to-5′ exonuclease activity. Cell 85:1089–1099.
  • Nacht, M., A. Strasser, Y. R. Chan, A. W. Harris, M. Schlissel, R. T. Bronson, and T. Jacks. 1996. Mutations in the p53 and SCID genes cooperate in tumorigenesis. Genes Dev. 10:2055–2066.
  • Oltvai, Z. N., C. L. Milliman, and S. J. Korsmeyer. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619.
  • Pavletich, N. P., K. A. Chambers, and C. O. Pabo. 1994. The DNA binding domain of p53 contains the four conserved regions and the major mutation hotspots. Genes Dev. 7:2556–2564.
  • Perry, M. E., J. Piette, J. Zawadzki, D. Harvey, and A. J. Levine. 1993. The mdm-2 gene is induced in response to UV light in a p53-dependent manner. Proc. Natl. Acad. Sci. USA 90:11623–11627.
  • Poon, R. Y., K. Yamashita, J. P. Adamczewski, T. Hunt, and J. Shuttleworth. 1993. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12:3123–3132.
  • Rathmell, W. K., W. K. Kaufmann, J. C. Hurt, L. L. Byrd, and G. Chu. 1997. DNA-dependent protein kinase is not required for accumulation of p53 or cell cycle arrest after DNA damage. Cancer Res. 57:68–74.
  • Raycroft, L., H. Wu, and G. Lozano. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Renzing, J., S. Hansen, and D. P. Lane. 1996. Oxidative stress is involved in the UV activation of p53. J. Cell Sci. 109:1105–1112.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J.-P. Tassan, L. Schaeffer, E. A. Nigg, J. H. J. Hoeijmakers, and J.-M. Egly. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101.
  • Samad, A., C. W. Anderson, and R. B. Carroll. 1986. Mapping of phosphomonoester and apparent phosphodiester bonds of the oncogene product p53 from simian virus 40-transformed 3T3 cells. Proc. Natl. Acad. Sci. USA 83:897–901.
  • Schaeffer, L., V. Moncollin, R. Roy, A. Staub, M. Mezzina, A. Sarasin, G. Weeda, J. H. Hoeijmakers, and J. M. Egly. 1994. The ERCC2/DNA repair protein is associated with the class II BTF2/TFIIH transcription factor. EMBO J. 13:2388–2392.
  • Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermuden, J. H. S. Hoeymakers, P. Chambon, and J. M. Egly. 1993. DNA repair helicases: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Serizawa, H., T. P. Makela, J. W. Conaway, R. C. Conaway, R. A. Weinberg, and R. A. Young. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 374:280–287.
  • Shiekhattar, R., F. Mermelstein, R. P. Fisher, R. Drapkin, B. Dynlacht, H. C. Wessling, D. O. Morgan, and D. Reinberg. 1995. CDK-activating kinase complex is a component of human transcription factor TFIIH. Nature 374:283–287.
  • Solomon, M. J., J. W. Harper, and J. Shuttleworth. 1993. CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J. 12:3133–3142.
  • Solomon, M. J., T. Lee, and M. W. Kirschner. 1992. Role of phosphorylation in p34cdc2 activation: identification of an activating kinase. Mol. Biol. Cell 3:13–27.
  • Tassan, J. P., M. Jaquenoud, A. M. Fry, S. Frutiger, G. J. Hughes, and E. A. Nigg. 1995. In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J. 14:5608–5617.
  • Wang, X. W., H. Yeh, L. Schaeffer, R. Roy, V. Moncollin, J.-M. Egly, Z. Wang, E. C. Friedberg, M. K. Evans, B. G. Taffe, V. A. Bohr, G. Weeda, J. H. J. Hoeijmakers, K. Forrester, and C. C. Harris. 1995. p53 modulation of TFIIH associated nucleotide excision repair activity. Nat. Genet. 10:188–195.
  • Wang, X. W., W. Verneulen, J. D. Coursen, M. Gibson, S. E. Lupold, K. Forrester, G. Xu, L. Elmore, H. Yeh, J. H. Hoeijmakers, and C. C. Harris. 1996. The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev. 10:1219–1232.
  • Wang, Y., and C. Prives. 1995. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 276:88–91.
  • Wu, X., J. H. Bayle, D. Olson, and A. J. Levine. 1993. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 7:1126–1132.
  • Xiao, H., A. Pearson, B. Coulombe, R. Truant, S. Zhang, J. L. Regier, S. J. Triezenberg, D. Reinberg, O. Flores, C. J. Ingles, and J. Greenblatt. 1994. Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol. Cell. Biol. 14:7013–7024.
  • Xiong, Y., G. J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and D. Beach. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704.
  • Xu, Y., and D. Baltimore. 1996. Dual roles of Atm in the cellular response to radiation and in cell growth control. Genes Dev. 10:2401–2410.
  • Yamaizumi, M., and T. Sugano. 1994. UV-induced nuclear accumulation of p53 is evoked through DNA damage of actively transcribed genes independent of the cell cycle. Oncogene 9:2775–2784.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.