37
Views
131
CrossRef citations to date
0
Altmetric
Research Article

SNF2β-BRG1 is Essential for the Viability of F9 Murine Embryonal Carcinoma Cells

, , &
Pages 5976-5986 | Received 11 Apr 1997, Accepted 15 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Ali, S., Y. Lutz, J. P. Bellocq, M. P. Chenard-Neu, N. Rouyer, and D. Metzger. 1993. Production and characterization of monoclonal antibodies recognising defined regions of the human oestrogen receptor. Hybridoma 12:391–405.
  • Bouillet, P., M. Oulad-Abdelghani, S. Vicaire, J.-M. Garnier, B. Schuhbaur, P. Dollé, and P. Chambon. 1995. Efficient cloning of cDNAs of retinoic acid-responsive genes in P19 embryonal carcinoma cells and characterization of a novel mouse gene, Stra1 (mouse LERK-2/Eplg2). Dev. Biol. 170:420–433.
  • Boylan, J., D. Lohnes, R. Taneja, P. Chambon, and L. J. Gudas. 1993. Loss of RARμ function by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc. Natl. Acad. Sci. USA 90:9601–9605.
  • Boylan, J., T. Lufkin, C. C. Achkar, R. Taneja, P. Chambon, and L. J. Gudas. 1995. Targeted disruption of retinoic acid receptor a (RARa) and RARμ results in receptor-specific alterations in retinoic acid-mediated differentiation and retinoic acid metabolism. Mol. Cell. Biol. 15:843–851.
  • Cairns, B. R., N. L. Henry, and R. D. Kornberg. 1996. TFG3/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol. Cell. Biol. 16:3308–3316.
  • Cairns, B. R., R. S. Levinson, K. R. Yamamoto, and R. D. Kornberg. 1996. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10:2131–2144.
  • Cairns, B. R., Y. Lorch, Y. Li, M. Zhang, L. Lacomis, H. Erdjument-Bromage, P. Tempst, J. Du, B. Laurent, and R. D. Kornberg. 1996. RSC, an essential, abundant chromatin-remodeling complex. Cell 87:1249–1260.
  • Carlson, M., and B. C. Laurent. 1994. The SNF/SWI family of global transcriptional activators. Curr. Opin. Cell Biol. 6:396–402.
  • Chambon, P. 1996. A decade of molecular biology of retinoic acid receptors. FASEB J. 10:940–954.
  • Chiba, H., M. Mimatsu, A. Nomoto, and H. Kato. 1994. Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 22:1815–1820.
  • Clifford, J., H. Chiba, D. Sobieszczuk, D. Metzger, and P. Chambon. 1996. RXRa-null F9 embryonal carcinoma cells are resistant to the differentiation, anti-proliferative and apoptotic effects of retinoids. EMBO J. 15:4142–4155.
  • Côté, J., J. Quinn, J. L. Workman, and C. L. Peterson. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60.
  • Dingwall, A. K., S. J. Beck, C. M. McCallum, J. W. Tamkun, G. W. Kalpana, S. P. Geoff, and M. P. Scott. 1995. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. Mol. Biol. Cell 6:777–791.
  • Dunaief, J. L., B. E. Strober, S. Guha, P. A. Khavari, K. Alin, J. Luban, M. Begemann, G. R. Crabtree, and S. P. Goff. 1994. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79:119–130.
  • Elfling, L. K., R. Deuring, C. M. McCallum, C. L. Peterson, and J. W. Tamkun. 1994. Identification and characterization of Drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol. Cell. Biol. 14:2225–2234.
  • Elgin, S. R. C. 1996. Heterochromatin and gene regulation in Drosophila. Curr. Opin. Genet. Dev. 6:193–202.
  • Grunstein, M. 1990. Histone function in transcription. Annu. Rev. Cell Biol. 6:643–678.
  • Ichinose, H., J.-M. Garnier, P. Chambon, and R. Losson. 1997. Liganddependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2. Gene 188:95–100.
  • Ichinose, H., and Y. Lutz. Unpublished data.
  • Imbalzano, A. N., H. Kwon, M. R. Green, and R. E. Kingston. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Imbalzano, A. N., G. R. Schnitzler, and R. E. Kingston. 1996. Nucleosome disruption by human SWI/SNF is maintained in the absence of continued ATP hydrolysis. J. Biol. Chem. 271:20726–20733.
  • Khavari, P. A., C. L. Peterson, J. W. Tamukun, D. B. Mendel, and G. R. Crabtree. 1993. BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature 366:170–174.
  • Kingston, R. E., C. A. Bunker, and A. N. Imbalzano. 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10:905–920.
  • Kuchler, R. 1977. Development of animal cell populations in vitro, p. 90–113. In R. Kuchler (ed.), Biochemical methods in cell culture and virology. Dowden, Hutchinson and Ross Inc., Stroudsburg, Pa.
  • Kwon, H., A. N. Imbalzano, P. A. Khavari, R. E. Kingston, and M. R. Green. 1994. Nucleosomal disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–481.
  • Laurent, B. C., and M. Carlson. 1992. Yeast SNF2/SWI2, SNF5 and SNF6 proteins function coordinately with the gene-specific transcriptional activators GAL4 and Bicoid. Genes Dev. 6:1707–1715.
  • Laurent, B. C., I. Treich, and M. Carlson. 1993. The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev. 7:583–591.
  • Le Douarin, B., A. L. Nielsen, J. M. Garnier, H. Ichinose, F. Jeanmougin, R. Losson, and P. Chambon. 1996. A possible involvement of TIF1a and TIFþ in epigenetic control of transcription by nuclear receptors. EMBO J. 15:6701–6715.
  • Metzger, D., J. Clifford, H. Chiba, and P. Chambon. 1995. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92:6991–6995.
  • Moehrle, A., and P. Paro. 1994. Spreading the silence: epigenetic transcriptional regulation during Drosophila development. Dev. Genet. 15:478–484.
  • Muchardt, C., and M. Yaniv. 1993. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12:4279–4290.
  • Muchardt, C., J.-C. Reyes, B. Bourachot, E. Legouy, and M. Yaniv. 1996. The hbrm and BRG-1 proteins, component of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J. 15:3394–3402.
  • Okabe, I., L. C. Bailey, O. Attree, S. Srinivasan, J. M. Perkel, B. C. Laurent, M. Carlson, D. L. Nelson, and R. L. Nussbaum. 1992. Cloning of human and bovine homologs of SNF2/SWI2: a global activator of transcription in yeast S. cerevisiae. Nucleic Acids Res. 20:4649–4655.
  • Orlando, V., and R. Paro. 1995. Chromatin multiprotein complexes involved in the maintenance of transcription patterns. Curr. Opin. Genet. Dev. 5:174–175.
  • Ostlund Farrants, A. K., P. Blomquist, H. Kwon, and O. Wrange. 1997. Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol. 17:895–905.
  • Owen-Hughes, T., R. T. Utley, J. Côté, C. L. Peterson, and J. L. Workman. 1996. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273:513–516.
  • Paranjape, S. M., R. T. Kamakura, and J. T. Kadonaga. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Pazin, M. J., R. T. Kamakaka, and J. T. Kadonaga. 1994. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266:2007–2011.
  • Peterson, C. L. 1996. Multiple SWItches to turn on chromatin? Curr. Opin. Genet. Dev. 6:171–175.
  • Peterson, C. L., and I. Herskowitz. 1992. Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription. Cell 68:573–583.
  • Peterson, C. L., and W. Tamkun. 1995. The SWI-SNF complex: a chromatin remodelling machine? Trends Biochem. Sci. 20:143–146.
  • Quinn, J., A. M. Freyberg, R. W. Ganster, M. C. Schmidt, and C. L. Peterson. 1996. DNA-binding properties of the yeast SWI/SNF complex. Nature 379:844–847.
  • Randazzo, F. M., P. Khavari, G. Crabtree, J. Tamkun, and J. Rossant. 1994. brg-1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev. Biol. 161:229–242.
  • Richmond, E., and C. L. Peterson. 1996. Functional analysis of the DNA- stimulated ATPase domain of yeast SWI2/SNF2. Nucleic Acids Res. 24:3685–3692.
  • Singh, P., J. Coe, and W. Hong. 1995. A role for retinoblastoma protein in potentiating transcriptional activation by the glucocorticoid receptor. Nature 374:562–565.
  • Strickland, S., and V. Mahdavi. 1978. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15:393–403.
  • Strickland, S., K. K. Smith, and K. R. Marotti. 1980. Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell 21:347–355.
  • Strober, B. E., J. L. Dunaief, S. Guha, and S. P. Goff. 1996. Functional interactions between the hBRM/hBRG1 transcriptional activators and the pRB family of proteins. Mol. Cell. Biol. 16:1576–1583.
  • Tamkun, J. W., R. Deuring, M. P. Scott, M. Kissinger, A. M. Pattatucci, T. C. Kaufman, and J. A. Kennison. 1992. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68:561–572.
  • te Riele, H., E. R. Maandag, A. Clarke, M. Hooper, and A. Berns. 1990. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 348:649–651.
  • Tsukiyama, T., and C. Wu. 1995. Purification and properties of an ATP- dependent nucleosome remodeling factor. Cell 83:1011–1020.
  • Tsukiyama, T., C. Daniel, J. Tamkun, and C. Wu. 1995. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026.
  • vom Baur, E. Unpublished data.
  • vom Baur, E., and Y. Lutz. Unpublished data.
  • Wall, G., P. D. Varga-Weisz, R. Sandaltzopoulos, and P. B. Becker. 1995. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J. 14:1727–1736.
  • Wang, W., J. Côté, Y. Xue, S. Zhou, P. A. Khavari, S. R. Biggar, C. Muchardt, G. Kalpana, S. P. Goff, M. Yaniv, J. L. Workman, and G. R. Crabtree. 1996. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J. 15:5370–5382.
  • Wang, W., Y. Xue, S. Zhou, A. Kuo, B. R. Cairns, R. Tjian, and G. R. Crabtree. 1996. Diversity and specialization of mammalian SWI/SNF complex. Genes Dev. 10:2117–2130.
  • Winston, F., and M. Carlson. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet. 8:387–391.
  • Wolffe, A. P. 1994. Nucleosome positioning and modification: chromatin structures that potentiate transcription. Trends Biochem. Sci. 19:240–244.
  • Wolffe, A. P. 1994. Transcription in tune with histones. Cell 77:13–16.
  • Xiao, J. H., I. Davidson, H. Matthes, J. M. Garnier, and P. Chambon. 1991. Cloning, expression, and transcriptional properties of the human enhancer factor TEF-1. Cell 65:551–568.
  • Yoshinaga, S. K., C. L. Peterson, I. Herskowitz, and K. R. Yamamoto. 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258:1598–1604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.