7
Views
80
CrossRef citations to date
0
Altmetric
Research Article

CA150, a Nuclear Protein Associated with the RNA Polymerase II Holoenzyme, Is Involved in Tat-Activated Human Immunodeficiency Virus Type 1 Transcription

, , , , &
Pages 6029-6039 | Received 29 Apr 1997, Accepted 18 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Barberis, A., J. Pearlberg, N. Simkovich, S. Farrell, P. Reinagel, C. Bamdad, G. Sigal, and M. Ptashne. 1995. Contact with a component of the polymerase II holoenzyme suffices for gene activation. Cell 81:359–368.
  • Berkhout, B., A. Gatignol, A. B. Rabson, and K.-T. Jeang. 1990. TAR- independent activation of the HIV-1 LTR: evidence that Tat requires specific regions of the promoter. Cell 62:757–767.
  • Berkhout, B., and K.-T. Jeang. 1992. Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 66:139–149.
  • Blair, W. S., R. A. Fridell, and B. R. Cullen. 1996. Synergistic enhancement of both initiation and elongation by acidic transcription activation domains. EMBO J. 15:1658–1665.
  • Blau, J., H. Xiao, S. McCracken, P. O’Hare, J. Greenblatt, and D. Bentley. 1996. Three functional classes of transcriptional activation domains. Mol. Cell. Biol. 16:2044–2055.
  • Bohjanen, P. R., R. A. Colvin, M. Puttaraju, M. D. Been, and M. A. Garcia-Blanco. 1996. A small circular TAR RNA decoy specifically inhibits Tatactivated HIV-1 transcription. Nucleic Acids Res. 24:3733–3738.
  • Bork, P., and M. Sudol. 1994. The WW domain: a signalling site in dystrophin? Trends Biochem. Sci. 19:531–533.
  • Carroll, R., B. M. Peterlin, and D. Derse. 1992. Inhibition of human immunodeficiency virus type 1 Tat activity by coexpression of heterologous trans activators. J. Virol. 66:2000–2007.
  • Chan, D. C., M. T. Bedford, and P. Leder. 1996. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15:1045–1054.
  • Chang, L.-J., E. McNulty, and M. Martin. 1993. Human immunodeficiency viruses containing heterologous enhancer/promoters are replication competent and exhibit different lymphocyte tropisms. J. Virol. 67:743–752.
  • Chao, D. M., E. L. Gadbois, P. J. Murray, S. F. Anderson, M. S. Sonu, J. D. Parvin, and R. A. Young. 1996. A mammalian SRB protein associated with an RNA polymerase II holoenzyme. Nature (London) 380:82–85.
  • Cujec, T. P., H. Cho, E. Maldonado, J. Meyer, D. Reinberg, and B. M. Peterlin. 1997. The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase II holoenzyme. Mol. Cell. Biol. 17:1817–1823.
  • Cullen, B. R. 1986. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46:973–982.
  • Cullen, B. R. 1990. The HIV-1 Tat protein: an RNA sequence-specific processivity factor? Cell 63:655–657.
  • Cullen, B. R. 1993. Does HIV-1 Tat induce a change in viral initiation rights? Cell 73:417–420.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Farrell, S., N. Simkovich, Y. Wu, A. Barberis, and M. Ptashne. 1996. Gene activation by recruitment of the RNA polymerase II holoenzyme. Genes Dev. 10:2359–2367.
  • Feinberg, M. B., D. Baltimore, and A. D. Frankel. 1991. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc. Natl. Acad. Sci. USA 88:4045–4049.
  • Fernandez, J., L. Andrews, and S. M. Mische. 1994. An improved procedure for enzymatic digestion of polyvinylidene difluoride-bound proteins for internal sequence analysis. Anal. Biochem. 218:112–117.
  • Fridell, R. A., L. S. Harding, H. P. Bogerd, and B. R. Cullen. 1995. Identification of a novel human zinc finger protein that specifically interacts with the activation domain of lentiviral Tat proteins. Virology 209:347–357.
  • Garcia-Blanco, M. A., S. Jamison, and P. A. Sharp. 1989. Identification and purification of a 62,000-dalton protein that binds specifically to the polypyrimidine tract of introns. Genes Dev. 3:1874–1886.
  • Garćía-Martínez, L. F., D. Ivanov, and R. B. Gaynor. 1997. Association of Tat with purified HIV-1 and HIV-2 transcription preinitiation complexes. J. Biol. Chem. 272:6951–6958.
  • Gerber, H. P., K. Seipel, O. Georgiev, M. Höfferer, M. Hug, S. Rusconi, and W. Schaffner. 1994. Transcriptional activation modulated by homopolymeric glutamine and proline stretches. Science 263:808–811.
  • Gil, A., P. A. Sharp, S. F. Jamison, and M. A. Garcia-Blanco. 1991. Characterization of cDNAs encoding the polypyrimidine tract-binding protein. Genes Dev. 5:1224–1236.
  • Goldstrohm, A., C. Suñé, and M. A. Garcia-Blanco. Unpublished results.
  • Graeble, M. A., M. J. Churcher, A. D. Lowe, M. J. Gait, and J. Karn. 1993. Human immunodeficiency virus type 1 transactivator protein, Tat, stimulates transcriptional read-through of distal terminator sequences in vitro. Proc. Natl. Acad. Sci. USA 90:6184–6188.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hengartner, C. J., C. M. Thompson, J. Zhang, D. M. Chao, S. M. Liao, A. J. Koleske, S. Okamura, and R. A. Young. 1995. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9:897–910.
  • Herrmann, C. H., and A. P. Rice. 1995. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J. Virol. 69:1612–1620.
  • Hoffmann, A., E. Sinn, T. Yamamoto, J. Wang, A. Roy, M. Horikoshi, and R. G. Roeder. 1990. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature (London) 346:387–390.
  • Jackson-Grusby, L., A. Kuo, and P. Leder. 1992. A variant limb deformity transcript expressed in the embryonic mouse limb defines a novel formin. Genes Dev. 6:29–37.
  • Jeang, K.-T., R. Chun, N. H. Lin, A. Gatignol, C. G. Glabe, and H. Fan. 1993. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J. Virol. 67:6224–6233.
  • Jones, K. A., and M. B. Peterlin. 1994. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 63:717–743.
  • Kashanchi, F., G. Piras, M. F. Radonovich, J. F. Duvall, A. Fattaey, C. M. Chiang, R. G. Roeder, and J. N. Brady. 1994. Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature (London) 367:295–299.
  • Kato, H., H. Sumimoto, P. Pognonec, C. H. Chen, C. A. Rosen, and R. G. Roeder. 1992. HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev. 6:655–666.
  • Keen, N. J., M. J. Gait, and J. Karn. 1996. Human immunodeficiency virus type-1 Tat is an integral component of the activated transcription-elongation complex. Proc. Natl. Acad. Sci. USA 93:2505–2510.
  • Keleher, C. A., M. J. Redd, J. Schultz, M. Carlson, and A. D. Johnson. 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719.
  • Koff, A., A. Giordano, D. Desai, K. Yamashita, J. W. Harper, S. Elledge, T. Nishimoto, D. O. Morgan, B. R. Franza, and J. M. Roberts. 1992. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science 257:1689–1694.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368:466–469.
  • Landschultz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764.
  • Lane, W. S., A. Galat, M. W. Harding, and S. L. Schreiber. 1991. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J. Protein Chem. 10:151–160.
  • Laspia, M. F., A. P. Rice, and M. B. Mathews. 1989. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell 59:283–292.
  • Laspia, M. F., P. Wendel, and M. B. Mathews. 1993. HIV-1 Tat overcomes inefficient transcriptional elongation in vitro. J. Mol. Biol. 232:732–746.
  • Liu, Y., C. Suñé, and M. A. Garcia-Blanco. Submitted for publication.
  • Lu, X., T. M. Welsh, and B. M. Peterlin. 1993. The human immunodeficiency virus type 1 long terminal repeat specifies two different transcription complexes, only one of which is regulated by Tat. J. Virol. 67:1752–1760.
  • Madore, S. J., and B. R. Cullen. 1993. Genetic analysis of the cofactor requirement for human immunodeficiency virus type 1 Tat function. J. Virol. 67:3703–3711.
  • Madore, S. J., and B. R. Cullen. 1995. Functional similarities between HIV-1 Tat and DNA sequence-specific transcriptional activators. Virology 206:1150–1154.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and D. Reinberg. 1996. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature (London) 381:86–89.
  • Marciniak, R. A., B. J. Calnan, A. D. Frankel, and P. A. Sharp. 1990. HIV-1 Tat protein trans-activates transcription in vitro. Cell 63:791–802.
  • Marciniak, R. A., and P. A. Sharp. 1991. The HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J. 10:4189–4196.
  • Mavankal, G., S. H. I. Ou, H. Oliver, D. Sigman, and R. B. Gaynor. 1996. Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II. Proc. Natl. Acad. Sci. USA 93:2089–2094.
  • Mylin, L. M., C. J. Gerardot, J. E. Hopper, and R. C. Dickson. 1991. Sequence conservation in the Saccharomyces and Kluveromyces GAL11 transcription activators suggests functional domains. Nucleic Acids Res. 19:5345–5350.
  • Nelbock, P., P. J. Dillon, A. Perkins, and C. A. Rosen. 1990. A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science 248:1650–1653.
  • Neumann, J. R., C. A. Morency, and K. O. Russian. 1987. A novel rapid assay for chloramphenicol acetyltransferase gene expression. BioTechniques 5:444–447.
  • Olsen, H. S., and C. A. Rosen. 1992. Contributions of the TATA motif to Tat-mediated transcriptional activation of human immunodeficiency virus gene expression. J. Virol. 66:5594–5597.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and U. Schibler. 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Parada, C. A., and R. G. Roeder. 1996. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature (London) 384:375–378.
  • Pearson, W. R. 1990. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183:63–98.
  • Pearson, W. R. 1995. Comparison of methods for searching protein sequence databases. Protein Sci. 4:1145–1160.
  • Pendergrast, P. S., D. Morrison, W. P. Tansey, and N. Hernandez. 1996. Mutations in the carboxy-terminal domain of TBP affect the synthesis of human immunodeficiency virus type 1 full-length and short transcripts similarly. J. Virol. 70:5025–5034.
  • Pirrotta, V., E. Manet, E. Hardon, S. E. Bickel, and M. Benson. 1987. Structure and sequence of the Drosophila zeste gene. EMBO J. 6:791–799.
  • Schultz, J., and M. Carlson. 1987. Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3637–3645.
  • Selby, M. J., E. S. Bain, P. A. Luciw, and B. M. Peterlin. 1989. Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 3:547–558.
  • Sharp, P. A., and R. A. Marciniak. 1989. HIV TAR: an RNA enhancer? Cell 59:229–230.
  • Shibuya, H., K. Irie, T. J. Ninomiya, M. Goebl, T. Taniguchi, and K. Matsumoto. 1992. New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature (London) 357:700–702.
  • Song, C. Z., P. M. Loewenstein, and M. Green. 1994. Transcriptional activation in vitro by the human immunodeficiency virus type 1 Tat protein: evidence for specific interaction with a coactivator(s). Proc. Natl. Acad. Sci. USA 91:9357–9361.
  • Southgate, C. D., and M. R. Green. 1991. The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function. Genes Dev. 5:2496–2507.
  • Sudol, M. 1996. The WW module competes with the SH3 domain? Trends Biochem. Sci. 21:161–163.
  • Suñé, C., and M. A. Garćía-Blanco. 1995. Transcriptional trans activation by human immunodeficiency virus type 1 Tat requires specific coactivators that are not basal factors. J. Virol. 69:3098–3107.
  • Suñé, C., and M. A. Garćía-Blanco. 1995. Sp1 transcription factor is required for in vitro basal and Tat-activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J. Virol. 69:6572–6576.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Trumpp, A., P. A. Blundell, J. L. de la Pompa, and R. Zeller. 1992. The chicken limb deformity (ld) gene encodes nuclear proteins expressed in specific cell types during morphogenesis. Genes Dev. 6:14–28.
  • Williams, F. E., U. Varanasi, and R. J. Trumbly. 1991. The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol. Cell. Biol. 11:3307–3316.
  • Yeung, K. M., J. A. Inostroza, F. H. Mermelstein, C. Kannabiran, and D. Reinberg. 1994. Structure-function analysis of the TBP-binding protein Dr1 reveals a mechanism for repression of class II gene transcription. Genes Dev. 8:2097–2109.
  • Yu, L., Z. Zhang, P. M. Loewenstein, K. Desai, Q. Tang, D. Mao, J. S. Symington, and M. Green. 1995. Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. J. Virol. 69:3007–3016.
  • Zhou, Q., and P. A. Sharp. 1995. Novel mechanism and factor for regulation by HIV-1 Tat. EMBO J. 14:321–328.
  • Zhou, Q., and P. A. Sharp. 1996. Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat. Science 274:605–610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.