23
Views
157
CrossRef citations to date
0
Altmetric
Research Article

Isolation and Functional Analysis of a cDNA for Human Jagged2, a Gene Encoding a Ligand for the Notch1 Receptor

, , , &
Pages 6057-6067 | Received 14 May 1997, Accepted 02 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Adams, M. D., M. B. Soares, A. R. Kerlavage, C. Fields, and J. C. Venter. 1993. Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nat. Genet. 4:373–380.
  • Angerer, L. M., and R. C. Angerer. 1992. In situ hybridization to cellular RNA with radiolabelled RNA probes, p. 15–32. In D. G. Wilkinson (ed.), In situ hybridization: a practical approach. IRL Press, Oxford, England.
  • Artavanis-Tsakonas, S., K. Matsuno, and M. E. Fortini. 1995. Notch signaling. Science 268:225–232.
  • Aster, J. Unpublished data.
  • Aster, J., W. Pear, R. Hasserjian, H. Erba, F. Davi, B. Luo, M. Scott, D. Baltimore, and J. Sklar. 1994. Functional analysis of the TAN-1 gene, a human homolog of Drosophila Notch. Cold Spring Harbor Symp. Quant. Biol. 59:125–136.
  • Aster, J. C., E. Robertson, R. Hasserjian, J. R. Turner, E. Kieff, and J. Sklar. Oncogenic forms of NOTCH1 lacking either the primary binding site for RBP-Jn or nuclear localization signal sequences retain the ability to associate with RBP-Jn and activate transcription. J. Biol. Chem., in press.
  • Axelrod, J. D., K. Matsuno, S. Artavanis-Tsakonas, and N. Perrimon. 1996. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 271:1826–1832.
  • Bailey, A. M., and J. W. Posakony. 1995. Suppressor of Hairless directly activates transcription of Enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9:2609–2622.
  • Baker, R., and G. Schubiger. 1996. Autonomous and nonautonomous Notch functions for embryonic muscle and epidermis development in Drosophila. Development 122:617–626.
  • Chitnis, A., D. Henrique, J. Lewis, D. Ish-Horowicz, and C. Kintner. 1995. Primary neurogenesis in Xenopus embryos regulated by a homologue of the Drosophila neurogenic gene Delta. Nature 375:761–766.
  • Chitnis, A., and C. Kintner. 1996. Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos. Development 122:2295–2301.
  • Chitnis, A. B. 1995. The role of Notch in lateral inhibition and cell fate specification. Mol. Cell. Neurosci. 6:557–569.
  • Christensen, S., V. Kodoyianni, M. Bosenberg, L. Friedman, and J. Kimble. 1996. lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development 122:1373–1383.
  • Cubas, P., J. F. de Celis, S. Campuzano, and J. Modolell. 1991. Proneural clusters of achaete-scute expression and the generation of sensory organs in the Drosophila imaginal wing disc. Genes Dev. 5:996–1008.
  • Decelis, J. F., J. Decelis, P. Ligoxygakis, A. Preiss, C. Delidakis, and S. Bray. 1996. Functional relationships between Notch, Su(H) and the bHLH genes of the E(Sp1) complex—the E(Spl) genes mediate only a subset of Notch activities during imaginal development. Development 122:2719–2728.
  • Doherty, D., G. Feger, S. Youngershepherd, L. Y. Jan, and Y. N. Jan. 1996. Delta is a ventral to dorsal signal complementary to Serrate, another Notch ligand in Drosophila wing formation. Genes Dev. 10:421–434.
  • Ellisen, L. W., J. Bird, D. C. West, A. L. Soreng, T. C. Reynolds, S. D. Smith, and J. Sklar. 1991. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661.
  • Fleming, R. J., T. N. Scottgale, R. J. Diederich, and S. Artavanis-Tsakonas. 1990. The gene Serrate encodes a putative EGF-like transmembrane protein essential for proper ectodermal development in Drosophila melanogaster. Genes Dev. 4:2188–2201.
  • Fortini, M. E., and S. Artavanis-Tsakonas. 1994. The suppressor of hairless protein participates in notch receptor signaling. Cell 79:273–282.
  • Fourney, R. M., J. Miyakoshi, R. S. I. Day, and M. C. Paterson. 1988. Northern blotting: efficient RNA staining and transfer. Focus 10:5–7.
  • Ghysen, A., and C. Dambly-Chaudiere. 1989. Genesis of the Drosophila peripheral nervous system. Trends Genet. 5:251–255.
  • Ginsburg, D., R. I. Handin, D. T. Bonthron, T. A. Donlon, G. A. Bruns, S. A. Latt, and S. H. Orkin. 1985. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science 228:1401–1406.
  • Gu, Y., N. A. Hukriede, and R. J. Fleming. 1995. Serrate expression can functionally replace Delta activity during neuroblast segregation in the Drosophila embryo. Development 121:855–865.
  • Hasserjian, R. P., J. C. Aster, F. Davi, D. S. Weinberg, and J. Sklar. 1996. Modulated expression of Notch1 during thymocyte development. Blood 88:970–976.
  • Heitzler, P., M. Bourouis, L. Ruel, C. Carteret, and P. Simpson. 1996. Genes of the Enhancer of split and achaete-scute complexes are required for a regulatory loop between Notch and Delta during lateral signalling in Drosophila. Development 122:161–171.
  • Heitzler, P., and P. Simpson. 1993. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development 117:1113–1123.
  • Heitzler, P., and P. Simpson. 1991. The choice of cell fate in the epidermis of Drosophila. Cell 64:1083–1092.
  • Henderson, S. T., D. Gao, E. J. Lambie, and J. Kimble. 1994. lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development 120:2913–2924.
  • Henrique, D., J. Adam, A. Myat, A. Chitnis, J. Lewis, and D. Ish-Horowicz. 1995. Expression of a Delta homologue in prospective neurons in the chick. Nature 375:787–790.
  • Jarriault, S., C. Brou, F. Logeat, E. H. Schroeter, R. Kopan, and A. Israel. 1995. Signalling downstream of activated mammalian Notch. Nature 377:355–358.
  • Jennings, B., J. Decelis, C. Delidakis, A. Preiss, and S. Bray. 1995. Role of Notch and achaete-scute complex in the expression of Enhancer of split bHLH proteins. Development 121:3745–3752.
  • Jennings, B., A. Preiss, C. Delidakis, and S. Bray. 1994. The Notch signalling pathway is required for Enhancer of split bHLH protein expression during neurogenesis in the Drosophila embryo. Development 120:3537–3548.
  • Jonsson, F., and E. Knust. 1996. Distinct functions of the Drosophila genes Serrate and Delta revealed by ectopic expression during wing development. Dev. Genes Evol. 206:91–101.
  • Kaelin, W. G., Jr., W. Krek, W. R. Sellers, J. A. DeCaprio, F. Ajchenbaum, C. S. Fuchs, T. Chittenden, Y. Li, P. J. Farnham, M. A. Blanar, D. M. Livingston, and E. K. Flemington. 1992. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70:351–364.
  • Kopan, R., E. H. Schroeter, H. Weintraub, and J. S. Nye. 1996. Signal transduction by activated mNotch—importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl. Acad. Sci. USA 93:1683–1688.
  • Kopan, R., and D. L. Turner. 1996. The Notch pathway—democracy and aristocracy in the selection of cell fate. Curr. Opin. Neurobiol. 6:594–601.
  • Kopczynski, C. C., A. K. Alton, K. Fechtel, P. J. Kooh, and M. A. Muskavitch. 1988. Delta, a Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev. 2:1723–1735.
  • Kunisch, M., M. Haenlin, and J. A. Campos-Ortega. 1994. Lateral inhibition mediated by the Drosophila neurogenic gene delta is enhanced by proneural proteins. Proc. Natl. Acad. Sci. USA 91:10139–10143.
  • Larsson, C., M. Lardelli, I. White, and U. Lendahl. 1994. The human NOTCH1, 2, and 3 genes are located at chromosome positions 9q34, 1p13- p11, and 19p13.2-p13.1 in regions of neoplasia-associated translocation. Genomics 24:253–258.
  • Lecourtois, M., and F. Schweisguth. 1995. The neurogenic Suppressor of Hairless DNA-binding protein mediates the transcriptional activation of the Enhancer of split complex genes triggered by Notch signaling. Genes Dev. 9:2598–2608.
  • Lewis, J. 1996. Neurogenic genes and vertebrate neurogenesis. Curr. Opin. Neurobiol. 6:3–10.
  • Lindsell, C. E., J. Boulter, G. Disibio, A. Gossler, and G. Weinmaster. 1996. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol. Cell. Neurosci. 8:14–27.
  • Lindsell, C. E., C. J. Shawber, J. Boulter, and G. Weinmaster. 1995. Jagged: a mammalian ligand that activates Notch1. Cell 80:909–917.
  • Luo, B., and J. Sklar. Unpublished data.
  • Makela, T. P., J. D. Parvin, J. Kim, L. J. Huber, P. A. Sharp, and R. A. Weinberg. 1995. A kinase-deficient TFIIH is functional in basal and activated transcription. Proc. Natl. Acad. Sci. USA 92:5174–5178.
  • Mello, C. C., B. W. Draper, and J. R. Priess. 1994. The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell 77:95–106.
  • Morgenstern, J. P., and H. Land. 1990. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18:3587–3596.
  • Myat, A., D. Henrique, D. Ishhorowicz, and J. Lewis. 1996. A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev. Biol. 174:233–247.
  • Oellers, N., M. Dehio, and E. Knust. 1994. bHLH proteins encoded by the Enhancer of split complex of Drosophila negatively interfere with transcriptional activation mediated by proneural genes. Mol. Gen. Genet. 244:465–473.
  • Pear, W. S., J. C. Aster, M. L. Scott, R. P. Hasserjian, B. Soffer, J. Sklar, and D. Baltimore. 1996. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183:2283–2291.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.
  • Robey, E., D. Chang, A. Itano, D. Cado, H. Alexander, D. Lans, G. Weinmaster, and P. Salmon. 1996. An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87:483–492.
  • Romani, S., S. Compuzano, E. R. Macagno, and J. Modolell. 1989. Expression of the achaete and scute genes in Drosophila imaginal discs and their function in sensory organ development. Genes Dev. 3:997–1007.
  • Rooke, J., D. Pan, T. Xu, and G. M. Rubin. 1996. Kuz, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273:1227–1231.
  • Ruiz-Gomez, M., and A. Ghysen. 1993. The expression and role of a proneural gene, achaete, in the development of the larval nervous system of Drosophila. EMBO J. 12:1121–1130.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schweisguth, F. 1995. Suppressor of Hairless is required for signal reception during lateral inhibition in the Drosophila pupal notum. Development 121:1875–1884.
  • Shawber, C., J. Boulter, C. E. Lindsell, and G. Weinmaster. 1996. Jagged2—a Serrate-like gene expressed during rat embryogenesis. Dev. Biol. 180:370–376.
  • Simpson, P. 1994. The Notch receptors. R. G. Landes Campany, Austin, Tex.
  • Tax, F. E., J. J. Yeargers, and J. H. Thomas. 1994. Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature 368:150–154.
  • Thomas, U., S. A. Speicher, and E. Knust. 1991. The Drosophila gene Serrate encodes an EGF-like transmembrane protein with a complex expression pattern in embryos and wing discs. Development 111:749–761.
  • Uyttendaele, H., G. Marazzi, G. Y. Wu, Q. Y. Yan, D. Sassoon, and J. Kitajewski. 1996. Notch4/Int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122:2251–2259.
  • Vassin, H., K. A. Bremer, E. Knust, and J. A. Campos-Ortega. 1987. The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF- like repeats. EMBO J. 6:3431–3440.
  • Washburn, T., E. Schweighoffer, T. Gridley, D. Chang, B. J. Fowlkes, D. Cado, and E. Robey. 1997. Notch activity influences the a/þ versus μ/6 T cell lineage decision. Cell 88:833–843.
  • Wilkinson, H. A., K. Fitzgerald, and I. Greenwald. 1994. Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell 79:1187–1198.
  • Williams, R., U. Lendahl, and M. Lardelli. 1995. Complementary and combinatorial patterns of Notch gene family expression during early mouse development. Mech. Dev. 53:357–368.
  • Zimrin, A. B., M. S. Pepper, G. A. McMahon, F. Nguyen, R. Montesano, and T. Maciag. 1996. An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro. J. Biol. Chem. 271:32499–32502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.