7
Views
146
CrossRef citations to date
0
Altmetric
Research Article

Identification of RNR4, Encoding a Second Essential Small Subunit of Ribonucleotide Reductase in Saccharomyces cerevisiae

&
Pages 6105-6113 | Received 03 Feb 1997, Accepted 24 Jun 1997, Published online: 29 Mar 2023

REFERENCES

  • Allen, J. B., Z. Zhou, W. Siede, E. C. Friedberg, and S. J. Elledge. 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8:2401–2424.
  • Barlow, T., R. Eliasson, A. Platz, P. Reichard, and B. M. Sjoberg. 1983. Enzymic modification of a tyrosine residue to a stable free radical in ribonucleotide reductase. Proc. Natl. Acad. Sci. USA 80:1492–1495.
  • Bjorklund, S., S. Skog, B. Tribukait, and L. Thelander. 1990. S-phasespecific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs. Biochemistry 29:5452–5458.
  • Conner, J., J. Murray, A. Cross, J. B. Clements, and J. S. Marsden. 1995. Intracellular localization of herpes simplex virus type 1 ribonucleotide reductase subunits during infection of cultured cell. Virology 213:615–623.
  • Desany, B., and S. J. Elledge. Unpublished data.
  • Elledge, S. J., and R. W. Davis. 1987. Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: a DNA damage-inducible gene required for mitotic viability. Mol. Cell. Biol. 7:2783–2793.
  • Elledge, S. J., and R. W. Davis. 1989. DNA damage induction of ribonucleotide reductase. Mol. Cell. Biol. 9:4932–4940.
  • Elledge, S. J., and R. W. Davis. 1989. Identification of a damage-regulatory element of RNR2 and evidence that four distinct proteins bind to it. Mol. Cell. Bio. 9:5373–5386.
  • Elledge, S. J., and R. W. Davis. 1990. Two genes differentially regulated in the cell cycle and by DNA-damaging agents encode alternate regulatory subunits of ribonucleotide reductase. Genes Dev. 4:740–751.
  • Elledge, S. J., Z. Zhou, J. B. Allen, and T. A. Navas. 1993. DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays 15:333–339.
  • Engstrom, Y., S. Eriksson, I. Jildevik, S. Skog, L. Thelander, and B. Tribukait. 1985. Cell cycle-dependent expression of mammalian ribonucleotide reductase. J. Biol. Chem. 260:9114–9116.
  • Engstrom, Y., and B. Rozell. 1988. Immunocytochemical evidence for the cytoplasmic localization and differential expression during the cell cycle of the M1 and M2 subunits of mammalian ribonucleotide reductase. EMBO J. 7:1615–1620.
  • Eriksson, S., A. Graslund, S. Skog, L. Thelander, and B. Tribukait. 1984. Cell cycle-dependent regulation of mammalian ribonucleotide reductase. J. Biol. Chem. 259:11695–11700.
  • Fernandez-Sarabia, M.-J., C. McInerny, P. Harris, C. Gordon, and P. Fantes. 1993. The cell cycle genes cdc22+ and suc22+ of the fission yeast Schizosaccharomyces pombe encode the large and small subunits of ribonucleotide reductase. Mol. Gen. Genet. 238:241–251.
  • Harris, P., P. J. Kersey, C. J. McInerny, and P. A. Fante. 1996. Cell cycle, DNA damage, and hear shock regulate suc22+ expression in fission yeast. Mol. Gen. Genet. 252:284–291.
  • Hofmann, K., and P. Bucher. 1995. The FHA domain: a putative nuclear signaling domain found in protein kinases and transcription factors. Trends. Biochem. Sci. 20:347–349.
  • Huang, M. Unpublished data.
  • Jones, W., and S. J. Elledge. Unpublished data.
  • Kohrer, K., and H. Domdey. 1991. Preparation of high molecular weight RNA. Methods Enzymol. 194:398–405.
  • Leem, S.-H., and H. Ogawa. 1991. The MRE4 gene encodes a novel protein kinase homologue required for meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 20:449–457.
  • Lycksell, P. O., R. Ingemarson, R. Davis, A. Graslund, and L. Thelander. 1994. 1H NMR studies of mouse ribonucleotide reductase: the R2 protein carboxyl-terminal tail, essential for subunit interaction, is highly flexible but becomes rigid in the presence of protein R1. Biochemistry 33:2838–2842.
  • Lydall, D., and T. Weinert. 1995. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270:1488–1491.
  • Mathews, C. K., B. M. Sjoberg, and P. Reichard. 1987. Ribonucleotide reductase of Escherichia coli. Cross-linking agents as probes of quaternary and quinary structure. Eur. J. Biochem. 166:279–285.
  • Navas, T. A., Z. Zhou, and S. J. Elledge. 1995. DNA polymerase ε links the DNA replication machinery to the S phase checkpoint. Cell 80:29–39.
  • Petersson, L., A. Graslund, A. Ehrenberg, B. Sjoberg, and P. Reichard. 1980. The iron center in ribonucleotide reductase from Escherichia coli. J. Biol. Chem. 255:6706–6712.
  • Reichard, P. 1993. From RNA to DNA, why so many ribonucleotide reductases? Science 260:1773–1777.
  • Rockmill, B., and G. S. Roeder. 1991. A meiosis-specific protein kinase homolog required for chromosome synapsis and recombination. Genes Dev. 5:2392–2404.
  • Rothstein, R. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanchez, Y., B. A. Desany, W. J. Jones, Q. Liu, B. Wang, and S. J. Elledge. 1996. Regulation of RAD53 by the ATM-like kinase MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360.
  • Sikorska, M., L. M. Brewer, T. Youdale, R. Richards, J. F. Whitfield, R. A. Houghten, and P. R. Walker. 1990. Evidence that mammalian ribonucleotide reductase is a nuclear membrane associated glycoprotein. Biochem. Cell Biol. 68:880–888.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Sacchromyces cerevisiae. Genetics 122:19–27.
  • Stern, D., P. Zheng, D. R. Berdler, and C. Zerillo. 1991. Spk1, a new kinase from Sacchromyces cerevisiae, phosphorylates proteins on serine, threonine, and tyrosine. Mol. Cell Biol. 11:987–1001.
  • Stubbe, J. 1990. Ribonucleotide reductases: amazing and confusing. J. Biol. Chem. 265:5329–5332.
  • Sugimoto, K., T. Shimomura, K. Hashimoto, H. Araki, A. Sugino, and K. Matsumoto. 1996. Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Proc. Natl. Acad. Sci. USA 93:7048–7052.
  • Sun, L., and J. A. Fuchs. 1992. Escherichia coli ribonucleotide reductase expression is cell cycle regulated. Mol. Biol. Cell 3:1095–1105.
  • Sun, Z., D. S. Fay, F. Marini, M. Foiani, and D. F. Stern. 1996. Spk1/Rad53 is regulated by Mec1-dependent protein phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev. 10:395–406.
  • Wang, P. J., A. Chabes, R. Casagrande, X. C. Tian, L. Thelander, and T. C. Huffaker. 1997. RNR4, a novel ribonucleotide reductase small-subunit protein. Mol. Cell. Biol. 17:6114–6121.
  • Weinert, T. A., G. L. Kiser, and L. H. Hartwell. 1994. Mitotic checkpoint genes in budding yeast and dependence of mitosis on DNA replication and repair. Genes. Dev. 8:652–665.
  • Wheeler, L. J., N. B. Ray, C. Ungermann, S. P. Hendricks, M. A. Bernard, E. S. Hanson, and C. K. Mathews. 1996. T4 phage gene 32 protein as a candidate organizing factor for the deoxyribonucleotide triphosphate synthetase complex. J. Biol. Chem. 271:11156–11162.
  • Zhou, Z., and S. J. Elledge. 1992. Isolation of crt mutants constitutive for transcription of the DNA damage inducible gene RNR3 in Saccharomyces cerevisiae. Genetics 131:851–866.
  • Zhou, Z., and S. J. Elledge. 1993. DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75:1119–1127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.