16
Views
74
CrossRef citations to date
0
Altmetric
Research Article

The Yeast Nucleolar Protein Cbf5p Is Involved in rRNA Biosynthesis and Interacts Genetically with the RNA Polymerase I Transcription Factor RRN3

, , &
Pages 6175-6183 | Received 02 Jun 1997, Accepted 23 Jul 1997, Published online: 29 Mar 2023

REFERENCES

  • Andrade, L. E. C., E. M. Tan, and E. K. L. Chan. 1993. Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc. Natl. Acad. Sci. USA 90:1947–1951.
  • Arnez, J. G., and T. A. Steitz. 1994. Crystal structure of unmodified tRNAGln complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry 33:7560–7567.
  • Baim, S. B., D. F. Pietras, D. C. Eustice, and F. Sherman. 1985. A mutation allowing mRNA secondary structure diminishes translation of Saccharomyces cerevisiae iso-1-cytochrome c. Mol. Cell. Biol. 5:1839–1846.
  • Bakin, A., B. G. Lane, and J. Ofengand. 1994. Clustering of pseudouridine residues around the peptidyltransferase center of yeast cytoplasmic and mitochondrial ribosomes. Biochemistry 33:13475–13483.
  • Bakin, A., and J. Ofengand. 1993. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32:9754–9762.
  • Brasch, K., and R. L. Ochs. 1992. Nuclear bodies (NBs): a newly “rediscovered” organelle. Exp. Cell Res. 202:211–223.
  • Broach, J. R., J. N. Strathern, and J. B. Hicks. 1979. Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133.
  • Cadwell, C., J. Carbon, and S. Poole. Unpublished data.
  • Cadwell, R. C., and G. F. Joyce. 1994. Mutagenic PCR. PCR Methods Appl. 3:S136–S140.
  • Carmo-Fonseca, M., J. Ferreira, and A. I. Lamond. 1993. Assembly of snRNP-containing coiled bodies is regulated in interphase and mitosis— evidence that the coiled body is a kinetic nuclear structure. J. Cell Biol. 120:841–852.
  • Clarke, E. M., C. L. Peterson, A. V. Brainard, and D. L. Riggs. 1996. Regulation of the RNA polymerase I and III transcription systems in response to growth conditions. J. Biol. Chem. 271:22189–22195.
  • Connelly, C., and P. Hieter. 1996. Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression. Cell 86:275–285.
  • Earnshaw, W. C., H. Ratrie III, and G. Stetten. 1989. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12.
  • Filipowicz, W., and T. Kiss. 1993. Structure and function of nucleolar snRNPs. Mol. Biol. Rep. 18:149–156.
  • Fryberg, C., L. Ryan, L. McNally, M. Kenton, and E. Fryberg. 1994. The actin protein superfamily. Soc. Gen. Physiol. Ser. 49:173–178.
  • Gautier, T., C. Dauphin-Villemant, C. Andre, C. Masson, J. Arnoult, and D. Hernandez-Verdun. 1992. Identification and characterization of a new set of nucleolar ribonucleoproteins which line the chromosomes during mitosis. Exp. Cell Res. 200:5–15.
  • Gautier, T., M. Robert-Nicoud, M.-N. Guolly, and D. Hernandez-Verdun. 1992. Relocation of nucleolar proteins around chromosomes at mitosis. J. Cell Sci. 102:729–737.
  • Hopper, A. K. 1990. Genetic methods for study of trans-acting genes involved in processing of precursors to yeast cytoplasmic transfer RNAs. Methods Enzymol. 181:400–421.
  • Hopper, A. K., F. Banks, and V. Evangelidis. 1978. A yeast mutant which accumulates precursor tRNAs. Cell 14:211–219.
  • Jacob, S. T. 1995. Regulation of ribosomal gene transcription. Biochem. J. 306:617–626.
  • Jiang, W., and J. Carbon. Unpublished data.
  • Jiang, W., M.-Y. Lim, H.-J. Yoon, J. Thorner, G. S. Martin, and J. Carbon. 1995. Overexpression of the yeast MCK1 protein kinase suppresses conditional mutations in centromere-binding protein genes CBF2 and CBF5. Mol. Gen. Genet. 246:360–366.
  • Jiang, W., K. Middleton, H.-J. Yoon, C. Fouquet, and J. Carbon. 1993. An essential yeast protein, CBF5p, binds in vitro to centromeres and microtubules. Mol. Cell. Biol. 13:4884–4893.
  • Jones, J. S., and L. Prakash. 1990. Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers. Yeast 6:363–366.
  • Kaiser, C., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics: a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Keeling, P. J., and W. F. Doolittle. 1996. Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol. Biol. Evol. 13:1297–1305.
  • Koonin, E. V. 1996. Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. Nucleic Acids Res. 24:2411–2415.
  • Lefebvre, O., J. Ruth, and A. Sentenac. 1994. A mutation in the largest subunit of yeast TFIIIC affects tRNA and 5 S RNA synthesis. J. Biol. Chem. 37:23374–23381.
  • Lim, M.-Y., D. Dailey, G. S. Martin, and J. Thorner. 1993. Yeast MCK1 protein kinase autophosphorylates at tyrosine and serine but phosphorylates exogenous substrates at serine or threonine. J. Biol. Chem. 268:21154–21164.
  • Lindahl, L., R. H. Archer, and J. M. Zengel. 1994. Alternate pathways for processing in the internal transcribed spacer 1 in pre-rRNA of Saccharomyces cerevisiae. Nucleic Acids. Res. 22:5399–5407.
  • Lindahl, L., R. H. Archer, and J. M. Zengel. 1991. A new rRNA processing mutant of Saccharomyces cerevisiae. Nucleic Acids Res. 20:295–301.
  • Meier, U. T. 1996. Comparison of the rat nucleolar protein Nopp140 with its yeast homolog SRP40. J. Biol. Chem. 271:19376–19384.
  • Meier, U. T., and G. Blobel. 1994. NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J. Cell Biol. 127:1505–1514.
  • Meier, U. T., and G. Blobel. 1992. Nopp140 shuttles on tracks between nucleolus and cytoplasm. Cell 70:127–138.
  • Melese, T., and Z. Xhu. 1995. The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol. 7:319–324.
  • Miau, L. H., C. J. Chang, W. H. Tsai, and S. C. Lee. 1997. Identification and characterization of a nucleolar phosphoprotein, Nopp140, as a transcription factor. Mol. Cell. Biol. 17:230–239.
  • Moritz, M., B. A. Pulaski, and J. L. Woolford, Jr. 1991. Assembly of 60S ribosomal subunits is perturbed in temperature-sensitive yeast mutants defective in ribosomal protein L16. Mol. Cell. Biol. 11:5681–5692.
  • Muller, E. C., and B. Whittmann-Liebold. 1997. Phylogenetic relationship of organisms obtained by ribosomal protein comparison. Cell. Mol. Life Sci. 53:34–50.
  • Neigeborn, L., and A. Mitchell. 1991. The yeast MCK1 gene encodes a protein kinase homolog that activates early meiotic gene expression. Genes Dev. 5:533–548.
  • Noble, M., S. A. Lewis, and N. J. Cowan. 1989. The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and Tau. J. Cell Biol. 109:3367–3376.
  • Nogi, Y., L. Vu, and M. Nomura. 1991. An approach for isolation of mutants defective in 35S ribosomal RNA synthesis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88:7026–7030.
  • Nurse, K., J. Wrzesinski, A. Bakin, B. G. Lane, and J. Ofengand. 1995. Purification, cloning, and properties of the tRNA T55 synthase from Escherichia coli. RNA 1:102–112.
  • Ochs, R. L., and R. I. Press. 1992. Centromere autoantigens are associated with the nucleolus. Exp. Cell Res. 200:339–350.
  • Pluta, A. F., and W. C. Earnshaw. 1996. Specific interaction between human kinetochore protein CENP-C and a nucleolar transcriptional regulator. J. Biol. Chem. 271:18767–18774.
  • Raska, I., R. L. Ochs, L. E. C. Andrade, E. K. L. Chan, R. Burlingame, C. Peebles, D. Gruol, and E. M. Tan. 1990. Association between the nucleolus and the coiled body. J. Struct. Biol. 104:102–127.
  • Riggs, D. L., C. L. Peterson, J. Q. Wickham, L. M. Miller, E. M. Clarke, J. A. Crowell, and J.-C. Sergere. 1995. Characterization of the components of reconstituted Saccharomyces cerevisiae RNA polymerase I transcription complexes. J. Biol. Chem. 270:6205–6210.
  • Saitoh, H., J. Tomkiel, C. A. Cooke, H. Ratrie III, M. Mauer, N. F. Rothfield, and W. C. Earnshaw. 1992. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell 70:115–125.
  • Scheer, U., and D. Weisenberger. 1994. The nucleolus. Curr. Opin. Cell Biol. 6:354–359.
  • Shaw, P. J., and E. G. Jordan. 1995. The nucleolus. Annu. Rev. Cell Dev. Biol. 11:93–121.
  • Shero, J., and P. Hieter. 1991. A suppressor of a centromere DNA mutation encodes a putative protein kinase (MCK1). Genes Dev. 5:549–560.
  • Spiegelman, S., R. R. Sussman, and E. Pinska. 1950. On the cytoplasmic nature of “long-term adaptation” in yeast. Proc. Natl. Acad. Sci. USA 36:591–606.
  • Tollervey, D., H. Lehtonen, M. Carmo-Fonseca, and E. C. Hurt. 1991. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J. 10:573–583.
  • Tomkiel, J., C. A. Cooke, H. Saitoh, R. L. Bernat, and W. C. Earnshaw. 1994. CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase. J. Cell Biol. 125:531–545.
  • Weisenberger, D., and U. Scheer. 1995. A possible mechanism for the inhibition of ribosomal RNA gene transcription during mitosis. J. Cell Biol. 129:561–575.
  • Woolford, J. L., Jr., and J. R. Warner. 1991. The ribosome and its synthesis, p. 587–626. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol. I. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Yamamoto, R. T., Y. Nogi, J. A. Dodd, and M. Nomura. 1996. RRN3 gene of Saccharomyces cerevisiae encodes an essential RNA polymerase I transcription factor which interacts with the polymerase independently of DNA template. EMBO J. 15:3964–3973.
  • Yano, R., and M. Nomura. 1991. Suppressor analysis of temperature-sensitive mutations of the largest subunit of RNA polymerase I in Saccharomyces cerevisiae: a suppressor gene encodes the second-largest subunit of RNA polymerase I. Mol. Cell. Biol. 11:754–764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.